1-1- تاریخچه پیدایش زئولیت
زئولیتها به طور معمول ترکیبات آلومینوسیلیکات بلوری هستند که ساختار چهار وجهی TO4 Si) و Al (T = بهصورت شبکۀ سه بعدی چهار اتصالی دارند و اکثراً دارای ابعاد مولکولی با اندازۀ حفرههای یکنواخت هستند [1،2]. تاریخچه زئولیت با کشف مادۀ طبیعی استیلبیت[1] در سال 1765 میلادی توسط کرونستد[2] شروع شد که با گرمادهی مواد سیلیکاتی مشاهده نمود که جوش خورده و در شعله ذوب میشوند. با این مشاهدات کرونستد نام زئولیت که مشتق از لغات یونانی ”زئو“[3] به معنای جوشیدن و ”لیتوس“[4] به معنای سنگ میباشد را برای این مواد انتخاب نمود [3]. اولین زئولیت سنتزی تحت شرایط هیدروترمال در سال 1862 میلادی توسط دویل[5] با نام لواینیت[6] تهیه شد [4]. در سال 1948 میلادی بارر[7] مقالهای را در مورد سنتز و خواص جذب سطحی زئولیتها گزارش نمود و در سال 1955 کاربید[8] تعدادی از شکلهای کاتیونی زئولیت سنتزی مثل زئولیت A و X را گزارش نمود که نوع X شکل فوجاسیت[9] (FAU) مواد کمیاب معدنی میباشد. موبیل[10] در 1955 استفاده از زئولیتهای سنتزی بهعنوان جاذب سطحی و کاتالیزور را گزارش نمود و استفاده از زئولیت X بهعنوان کاتالیزور جهت هیدروکراکینگ مواد نفتی و گازی را ارائه نمود.
سنتز مواد با ساختار پیکره- باز[11] بهعنوان یک بحث جالب و کاربردی در فناوریهای صنعتی نظیر استفاده در فرایندهای کاتالیزوری، جذبی، تعویض یونی و جداسازی حائز اهمیت میباشد [5]. علاوه بر زئولیتهای آلومینوسیلیکاتی که بهعنوان بهترین مواد پیکره- باز محسوب میگردند، شبکه های معدنی دیگری که با گروههای آلی شکلدهی میشوند نیز مفید و کاربردی هستند [6]. در سال 1982 میلادی سنتز اولین خانوادۀ غربالهای مولکولی[12] بدون سیلیکا بهنام آلومینوفسفاتها توسط ویلسون[13] و همکاران [7] گزارش گردید که زمینۀ جدیدی در مورد سنتز مواد معدنی پیکره- باز بهوجود آمد [8]. غربالهای مولکولی، اکسیدهای بلوری میکرومتخلخل هستند که دستۀ بزرگ مواد پیکره- باز با ساختار بلوری سه بعدی را شامل میشوند و پلهای اکسیژنی در شبکۀ خود دارند.
ساختار آلومینوفسفاتها (AlPO4-n) بر پایۀ یک تناوب چهار وجهی AlO4 و PO4 برای تولید سیستم پیکره- باز میباشد که اتمهای آلومینیوم و فسفر موجود در شبکه میتوانند توسط سیلیس و عناصر دیگر نظیر Li، Be، B، Mg، Fe، Mn، Co، Zn، Ge، Ga، As و Ti برای تولید موقعیتهای اسید برونستد[14] و یا مراکز فعال کاتالیزوری جایگزین شوند [9،10]. در سال 1984 میلادی با وارد کردن سیلیس در هنگام سنتز غربالهای مولکولی آلومینوفسفات، نوع جدیدی از غربالهای مولکولی بهنام سیلیکوآلومینوفسـفات[15] (SAPO-n) تهیه شد که در این مواد با جانشینی P5+ توسط Si4+ بار شبکۀ زئولیت منفی می شود و خواص مبادلۀ کاتیونی و کاتالیزوری اسید ضعیف تا متوسط را مییابد [11]. خانوادۀ آلومینوفسفاتهای فلزی[16] (MeAlPO-n) و سیلیکوآلومینوفسفاتهای فلزی[17] (MeAPSO-n) نیز تهیه شدند. بعد از این سنتزها، فسفاتهای فلزی مثل بریلیوم فسفات و روی فسفات با ساختار مشابۀ زئولیتها که بدون آلومینیوم بودند، تهیه شدند. هاروی[18] و همکاران [12] پنج نوع بریلیوم فسفات با ساختار مشابۀ زئولیتهای آلومینوسیلیکاتی و با ساختار جدید سنتز نمودند. استاکی[19] و همکاران [13] در سال 1991 میلادی غربالهای مولکولی بریلیوم فسفات، روی فسفات، بریلیوم آرسنات و روی آرسنات هیدراته با ساختار مشابه آلومینوسیلیکاتها گزارش نمودند. این مواد در گسترۀ وسیعی از pH و در دمای سنتزی پائینتری نسبت به آلومینوفسفاتها تهیه میشوند. غربالهای مولکولی دیگر نظیر بریلیوم سیلیکات و روی سیلیکات، گالیم آرسنات و فسفات، بور سیلیکات و گالیم سیلیکات [18-14] نیز تهیه شدند. گویلو[20] و همکاران [19] با بهکار بردن عنصر واسطۀ نیکل بهجای آلومینیوم در شبکه آلومینوفسفات در حضور دیآمینها بهعنوان قالب دهنده[21]، نوع جدیدی از غربالهای مولکولی پیکره- باز بهنام نیکل فسفات با ریختVSB-1 [22] و VSB-5 را سنتز نمودند [20،21]. از غربالهای مولکولی دیگر که پایۀ فسفاتی دارند، میتوان به روی فسفات اشاره نمود که اولین بار توسط استاکی و همکاران [13] سنتز شد. این ترکیب دارای خواص جالبی نظیر تعویض یون، کاتالیزور نوری، رسانایی یونی، جداسازی و ذخیره کنندۀ گازهایی نظیر هیدروژن میباشند [22،23]. یک دستهبندی از غربالهای مولکولی در شکل 1-1 نشان داده شده
است.
2-1- سنتز غربال های مولکولی به روش هیدروترمال معمول (CH)
معمولاً تبلور غربالهای مولکولی در حالت هیدروترمال در دمای پائین و در فشار خودتولیدی[1] انجام می شود. ژل اولیه حاوی منبع عناصر شبکه، آب و ترکیبات آلی و یا کاتیونهای معدنی بهعنوان عوامل جهت دهندۀ ساختار[2] (SDAs) میباشد. تشکیل غربالهای مولکولی به منبع اولیۀ عناصر شبکه، حلال، منبع کاتیون معدنی یا ترکیب آلی، ترکیب ژل اولیه، زمان و دمای سنتز بستگی دارد [25]. دو مکانیسم برای سنتز غربالهای مولکولی پیشنهاد شده است: در مکانیسم اول گونه ها در حالت محلول هستند و در اثر واکنش با هم هستهزایی و رشد بلورها انجام می شود. در مکانیسم دوم که انتقال در فاز جامد میباشد، ساختار غربال مولکولی از هیدروژل جامد تشکیل می شود [26].
3-1- سنتز غربال های مولکولی توسط ریزموج (MW)
امواج در ناحیۀ ریزموج برای تسریع سنتز در واکنشهای آلی استفاده میشوند. این امواج میتوانند بدون هیچ مشکلی گرما را از طریق دیوارۀ ظرف انتقال دهند و مخلوط واکنش را به سرعت و به طور یکنواخت گرم کنند، به نحوی که سرعت گرمـادهی 2-1 درجۀ سانتیـگراد بر ثانیه برای 100 گـرم نـمونه بهوجود آورد. اثر گرمادهی تابش ریزموج از طریق فرایند فقدان دیالکتریک[1](ε) ظاهر میگردد [29-27]. مایعات و جامدات با هدایت بالا نظیر سوسپانسیون و مایعات قطبی فقدان دیالکتریک بالایی نشان میدهند، در حالیکه هیدروکربنها و حلالهای با قطبیت پائین اثرات گرمایی کمی را نشان می دهند [30].
سنتز غربالهای مولکولی با ریزموج در مقایسه با هیدروترمال معمول دارای مزیت زمان واکنش کم و تبلور یکنواخت میباشد. گرمادهی سریع و ایجاد نقاط داغ باعث کاهش قابل توجهی در زمان سنتز می شود و هستهزایی تحت گرمادهی ریزموج تقریباً ده مرتبه سریعتر میباشد [31]. حل شدن سریع ژل سنتزی زئولیت باعث کاهش زمان تبلور در طی گرمادهی ریزموج می شود و انرژی ریزموج می تواند بدون تغییرات دمایی توسط حلال جذب گردد و باعث یکنواختی و سرعت گرمادهی شود. اولین آلومینوفسفات سنتزی توسط گرمادهی ریزموج توسط گیموس[2] با نام CoAPO-5 تهیه گردید [32]. امکان سنتز آلومینوفسفاتها با وارد کردن رنگهای ناپایدار در هیدروترمال مثل آبی- 159 و کومارین- 40[3] بدون تخریب رنگ توسط گرمادهی ریزموج امکان پذیر می شود که این امر بهخاطر کاهش زمان تبلور با ریزموج میباشد [33].
در دهههای اخیر امکان تهیۀ ترکیبات با ساختارهای جدید و متنوع با به کارگیری فنون جدید سنتزی نظیر روش سنتزی سولوترمال[4] [34] و روش یونوترمال[5] شامل استفاده از یک مایع یونی بهعنوان حلال و قالب دهنده [35] فراهم شده است. بیش از دویست گونه از انواع ساختارهای آلومینوفسفات پیکره-باز شناسـایی شدند که اینها شامـل ساختارهای پیـکره- باز خنثی (AlPO4-n)، MeAPO-n و آلومینـوفسـفاتهای با شـبکه آنیونی میباشند [1]. آلومینوفسـفاتهای آنیونی شـامل یک شبکه سه بعدی و با ابعاد ساخته شده از تناوب پلیهدرال آلومینیوم- مرکزی (AlO4، AlO5 و AlO6) و چهاروجهی فسفر- مرکزی P(Ob)n(Ot)4-n میباشند (b و t بهترتیب نماینده پل و پایانی و n برابر 1، 2، 3 و 4 میباشد) که باعث تشکیل استوکیومتریهای متنوع نظیر Al2P3O123−، AlP2O83−، AlP4O169−، Al5P6O243−، Al12P13O523−، Al13P18O7215−، Al11P12O483−، Al3P5O206−، Al3P4O163−، AlPO4(OH)−، Al4P5O203− و غیره می شود [36]. اخیراً لی[6] و همکاران [37] یک سری داده ها شامل اطلاعاتی در زمینۀ ساختار آلومینوفسفاتهای پیکره- باز گزارش نمودند.
[1] Dielectric Loss
[2] Gimus
[3] Coumarin-40
[4] Solvothermal
[5] Ionothermal
[6] Li
[1] Autogenous
[2] Structure Directing Agents
[1] Stilbite
[2] Cronstedt
[3] Zeo
[4] Lithos
[5] Deville
[6] Levynite
[7] Barrer
[8] Carbide
[9] Faujasite
[10] Mobil
[11] Open-framework
[12] Molecular sieves
[13] Wilson
[14] Boronsted
[15] Silicoaluminophosphate
[16] Metalloaluminophosphates
[17] Silicomtalloaluminophosphates
[18] Harvay
[19] Stucky
[20] Guillou
[21] Template
[22] Versailles Santa Barbara-1
شیمیفیزیک[1] دانشی از علم شیمی است که به بررسی ماهیت شیمیایی سیستم های شیمیایی، از نظر اصول و قوانین نظری فیزیکی می پردازد. در واقع شیمی فیزیک رابطه میان دو علم شیمی و فیزیک را برقرار می کند و به دانش فیزیک بسیار نزدیک است. رشتههایی مانند نانو شیمی، شیمی سطح، شیمی کوانتوم، طیف سنجی مولکولی، ترمودینامیک، شیمی هستهای همه بیانگر ارتباط شیمی فیزیک به دانش فیزیک است ]1[.
2-1- نانو چیست؟
قرن بیست و یکم قرن فناوری نانو، پدیده ای بزرگ است که در تمامی گرایشهای علمی راه یافته است. فناوری نانو از کلمه یونانی به معنی “کوتوله” سرچشمه گرفته است. نانو فقط یک مقیاس است، یک میلیاردم یک متر و یا حدود یک صد هزارم ضخامت تار موی انسان است.
در بعد نانو خصوصیات فیزیکی و شیمیایی اتم ها، مولکول ها با خصوصیات توده ماده فرق دارد و همین مشخصات باعث پیدایش دستاوردهای جدیدی در علوم پزشکی و مهندسی شده است ]2[.
3-1- تاریخچه فناوری نانو
ایده فناوری نانو برای اولین بار در سال 1959 توسط فیزیکدان معروف ریچارد فاینمن[1] که در بحث خود با عنوان “فضای زیادی در سطوح پایین وجود دارد” مطرح شده است. او در بحث خود، امکان سنتز از طریق دستکاری مستقیم اتم ها و مولکول ها، در آینده را ارائه داد. اصطلاح فناوری نانو اولین بار توسط نوریو تایونگوچی2 در سال 1974 جهت دستیابی به اندازه هایی در حدود یک نانومتر مورد استفاده قرار گرفت. چشم انداز های فاینمن انقلابی در راه اندازی مسابقه جهانی فناوری نانو بود.
در سال 1981 اریک درکسلر3 اولین مقاله خود را در مورد نانو تکنولوژی مولکولی ارائه داد ]3و4[.
4-1- کربن
كربن یكی از متنوع ترین عناصر شناخته شده برای بشر است. تقریبا 79 درصد از شیمی آلی را کربن تشکیل میدهد. کربن در حالت پایه دارای ساختار الکترونی 1s22s22p2 است. هیبریداسیون sp3 اتم های کربن، این اجازه را به کربن میدهد که چهار پیوند کووالانسی با اتم های دیگر داشته باشد. در فناوری نانو، ترکیبات کربن یک دسته مهمی را تحت عنوان نانو ساختارهای کربنی به خود اختصاص میدهند. نانو ساختارهای کربنی دارای خصوصیات فیزیکی و شیمیایی ویژهای هستند و به همین لحاظ باعث پیشرفتهای متفاوتی در عرصه فناوری نانو شده است ]5[.
5-1- انواع گونه های کربن
از لحاظ میکروسکوپی کربن در انواع مختلفی در طبیعت یافت می شود. ترکیبات کربن مانند گرافیت، الماس، کربنهای بی شکل (آمورف)، فولرن، نانو الیاف کربنی، نانولولههای کربنی و گرافن هستند. انواع گونه های کربن در شکل 1-1 آورده شده است. فولرن یک نانو مادهی صفر بعدی، نانولوله های کربنی یک نانومادهی یک بعدی و گرافیت به عنوان یک ماده سه بعدی در نظر گرفته میشوند [6]. در زیر بعضی از خصوصیات و ویژگی های انواع مختلف کربن آورده شده است.
1-5-1- گرافیت
گرافیت یکی از رایج ترین فرمهای کربن است. بر خلاف الماس، گرافیت یک هادی الکتریکی است. بنابراین میتوان آن را به عنوان نمونه در الکترود لامپ قوس الکتریکی استفاده کرد. در شرایط استاندارد گرافیت پایدارترین شکل کربن است. بنابراین از آن در ترموشیمی به عنوان شرایط استاندارد برای تعریف گرمای تشکیل ترکیبات کربن استفاده می کنند. گرافیت یک ساختار شش ضلعی از اتمهای کربن است که دارای هیبرید sp2 می باشند. اتمهای کربن با پیوند های کوالانسی به هم متصل شده اند ]7[. شکل 1-2 صفحات گرافیت را نشان میدهد. در لایه های بین صفحات نیروهای ضعیف واندر والسی وجود دارد و به همین علت لایه های گرافیت به خوبی بر روی هم نگه داشته می شود. از پودر گرافیت به عنوان روان کننده خشک استفاده می شود. از نظر فعالیت شیمیایی، گرافیت کمی فعال تر از الماس است و دلیل آن توانایی نفوذ پذیری واکنشدهندهها بین لایه های شش ضلعی از اتم های کربن در گرافیت است ]8[.
2-5-1- الماس
الماس یکی از آلوتروپ شناخته شده کربن است. سختی و درخشندگی الماس، آن را برای کاربردهای صنعتی و جواهرات مفید میسازد. الماس سخت ترین ماده طبیعی شناخته شده است. با ادامه پیشرفت در تولید الماس مصنوعی کاربردهای آینده آن امکان پذیر میشوند. همچنین از الماس به عنوان نیمه رسانا برای ساخت تراشه به عنوان فرو رفتن حرارت در الکترونیک استفاده می شود. ساختار بلوری الماس در شکل 1-3 آورده شده است.
در ساختار بلوری الماس، چهاروجهیها با همدیگر یک شبکه سه بعدی از حلقههای کربن شش ضلعی تشکیل می دهند که این شبکه پایدار از پیوند کووالانسی و حلقه شش ضلعی دلیل سخت شدن الماس است. هر اتم کربن در الماس با چهار اتم کربن دیگر پیوند کوالانسی با هیبرید sp3 دارد ]9[.
3-5-1- فولرن
فولرن به عنوان یک آلوتروپ دیگر کربن در سال ۱۹۸۵ توسط یک گروه از دانشمندان دانشگاه رایس کشف شد ]10[. فولرنها مولکول هایی با اندازه های مختلف بوده و به طور کامل از کربن تشکیل شده اند که به شکل کره تو خالی، بیضی و یا لوله ای میباشند. ساده ترین فولرن، شامل ۶۰ اتم کربن در یک ساختار کروی است که بیست تا شش وجهی و دوازده تا پنج وجهی منظم دارد که در شکل 1-4 نشان داده شده است. هر اتم کربن در فولرن، دارای هیبریدsp2 است و با سه اتم کربن دیگر، پیوندهای سیگما تشکیل میدهد. این مولکولهای قفس مانند با فرمولهای C60، C70 و C78 وجود دارند. خصوصیات فیزیکی و شیمیایی فولرن در حال حاضر به طور مفصل مورد بررسی قرار گرفته است. فولرنهای مورد مطالعه در سال 2003 استفاده دارویی داشتند. محققان با اتصال آنتی بیوتیکهای خاص به ساختار فولرن توانستند باکتری های مقاوم و حتی سلولهای سرطانی خاص مانند ملانوم را مورد هدف قرار داده و راهکارهای درمانی را پیشنهاد دهند ]11[.
4-5-1- گرافن
گرافن یک تک لایه دو بعدی از گرافیت است که اتمهای کربن در یک پیکربندی شش ضلعی هستند و هیبریداسیون sp2دارند. شکل 1-5 ساختار اتمی گرافن است که در آن اتمهای کربن با نقاط سیاه و پیوندها با نقطه چین نمایش داده شده اند. گرافن دارای خواص الکتریکی و حرارتی و فیزیکی فوق العاده میباشد. گرافن را میتوان توسط لایه برداری مکانیکی از گرافیت تولید کرد. یکی از کاربردهای آن شامل جایگزین کردن سیلیکون در دستگاههای الکترونیکی با عملکرد بالا است ]12[.
6-1- نانولوله های کربنی
نانولولههای کربنی یکی از آلوتروپ های کربن با نانو ساختار استوانه ای میباشد که buckytubes نیز نامیده میشوند. نانولولههای کربنی، مولکولهای کربن استوانه ای با خواص فوق العاده هستند که آنها را در طیف گستردهای از کاربردهای صنعتی ( به عنوان نمونه در نانو الکترونیک، اپتیک و غیره) مفید میسازند. نانولوله های کربنی دارای خواص الکتریکی منحصر به فرد و هدایت حرارتی و خواص الکتریکی و مکانیکی می باشند ]13[.
1Richard Feynman
2NorioTaniguchi
3Eric Drexler
[1]Physical Chemistry
:
امروزه در مناطق مختلف جهان در خشکی و دریا به منظور استخراج نفت و گاز عملیات مختلفی صورت می گیرد. یکی از مشکلات دائمی در تولید نفت و گاز، فرایند تولید آب از مخازن می باشد که جز جدانشدنی فرایند تولید هیدروکربن ها می باشد. این آب تولیدی به دلیل مجاورت با مخازن از لحاظ کیفیت شبیه به نفت و یا گاز تولیدی می باشد. ضمن اینکه مواد مختلفی در طی مراحل مختلف از اکتشاف تا تولید مورد استفاده قرار می گیرند که برخی از آنها خطرناک و سمی بوده و می توانند اثرات زیانباری از جنبه های مختلف داشته باشند. در مرحله برداشت از یک چاه نفت یا گاز، آب همراه از جمله آلودگی هایی می باشد که در این حین تولید شده و به طور قطع به یقین تاثیرات خود را برمحیط زیست خواهد گذاشت. در بسیاری از مناطق جهان قوانین و مقرراتی برای جلوگیری از آلودگی های محیط زیست وضع و حتی در برخی از مناطق بسیاری از فعالیت هایی که منجر به تولید پسماندهای خطرناک نفت و گاز می شوند ممنوع گردیده است. حد مجاز نفت و روغن در آب تولیدی برای تخلیه به دریا در استرالیا mg/lit30 متوسط روزانه و mg/lit50 متوسط ماهانه می باشد. در خصوص موادی که از نظر محیط زیستی نگرانی قابل توجهی را ایجاد می کنند، بیشتر کشورها استانداردهای سخت و دقیقی برای تخلیه آب تولیدی تنطیم کرده اند. به عنوان مثال حد متوسط ماهیانه برای تخلیه نفت و روغن در آب تولیدی در ونزوئلا برابر با mg/lit 20 می باشد. در کشور ما میزان نفت و روغن در آب تولیدی برای تخلیه، بر اساس کنوانسیون کویت برای متوسط روزانهmg/lit 15 می باشد. رشد روز افزون فعالیت های صنعتی از یک سو و عدم رعایت الزامات زیست محیطی و مدیریت نامناسب پسماندهای تولیدی از سوی دیگر، سبب شده است که در چند دهه اخیر مقادیر زیادی از پسماندهای ناشی از فعالیت های نفتی به محیط زیست راه پیدا کند. در صورتیکه برنامه ریزی مناسب جهت تصفیه و یا حذف پسماندهایی که به محیط زیست تخلیه می شوند صورت نپذیرد این مهم می تواند اثرات نامطلوبی به دنبال داشته باشد. اثرات زیست محیطی هیدروکربنها و مواد سمی موجود در آب تولیدی بر روی اکوسیستم، گیاهان، جانوران و انسان در این بین از مهمترین موضوعات خواهد بود. امروزه توسعه روز افزون آگاهی عمومی درباره محیط زیست در فرایند تولید از چاه های نفت و گاز باعث توجه شرکتها و خریداران به این مهم شده است، بطوریكه مسائل زیست محیطی نقش تعیین كننده ای را در انتخاب تجهیزات و همچنین استفاده از تكنولوزی های جدید برای دفع این مواد و به حداقل رساندن آلودگی، ایفا می كند.
یکی از مهمترین عوامل در کاهش اثرات منفی زیست محیطی آب تولیدی مدیریت صحیح آن می باشد، بگونه ای که برخی مواقع هزینه های مورد نیاز در حذف آلودگیهای یک پسماند و یا کنترل انتشار آلودگی آن با اعمال مدیریتی صحیح و ابتکاری به میزان چشمگیری کاهش پیدا خواهد کرد.
با توجه به توسعه روز افزون صنعت نفت و گاز در کشور ما و اینکه به طور معمول با گذشت زمان و به دلایل مختلف، تولید آب همراه نفت و گاز روز به روز افزایش می یابد، در نظر گرفتن تمهیدات لازم جهت کاهش این صدمات و پیشگیری از آن ضروری به نظر می رسد.
با توجه به این ضرورت و اینکه بحث محیط زیست در طی سالهای اخیر جایگاه خوبی را در شرکت های نفتی پیدا کرده است، این پژوهش به بررسی مسائل مختلف آب تولیدی، روش های تصفیه آب تولیدی و انتخاب روش مناسب جهت تصفیه آب همراه در سکوهای تولید نفت و گاز در دریا پرداخته است. شایان ذکر است این پایان نامه تحت حمایت شرکت نفت فلات قاره ایران و با همکاری واحد پژوهش و توسعه این شرکت انجام شده است.
فصل اول: کلیات
1-1- آب تولیدی همراه نفت (PW)
سنگهای رسوبی كه در حال حاضر شامل لایههای رسوبی مختلفی است، در ابتدا از تهنشین شدن رسوبات اقیانوسها، دریاها، دریاچهها و جریانهای دیگر حاصل شدهاند. این رسوبات به طور طبیعی شامل مقدار زیادی آب هستند. این آب همچنان با این رسوبات دفن میشود و باقی میماند و میلیونها سال بعد به عنوان (Connate water) مورد توجه قرار میگیرد. بسیاری از لایههای رسوبی بزرگ، در ابتدا با آب های اقیانوسها و دریاها همراه بودهاند، بنابراین در اینگونه رسوبات، آب همراه در اصل آب دریاها بوده است. بهرحال، در طی سالهای مختلف رویدادهایی رخ میدهد كه طی آنها نفت كه از موادآلی تهنشین شده با این رسوبات تشكیل شده است از جایی كه سنگ مبداء نامیده میشود به سمت سنگهای رسوبی با نفوذپذیری و تراوایی بیشتر مهاجرت میكند. نفت دارای دانسیتهای كمتر از آب بوده و لذا به سمت سطح آب آمده و آب در لایههای زیرین قرار میگیرد و این آب، آب حوزههای نفتی نام میگیرد که به صورت ناخواسته هنگام استخراج
نفت یا گاز به سطح آورده می شود. شکل (1-1) نحوه قرارگیری گاز، نفت و آب در یک مخزن را نشان داده است.
طبق منابع موجود میتوان گفت حدود سال 1938 بود كه وجود شكافها و حفرههایی در مخازن هیدروكربوری كه شامل آب هستند، شناخته شد. Fettke اولین كسی بود كه وجود آب را در مخازن تولید كنندة نفت گزارش داد. اما وی گمان میكرد كه این آب ممكن است در حین عملیات حفاری وارد حفرههای مخزن شده باشد.
در بیشتر سازندهای حاوی نفت اینگونه گمان میرود كه سنگ مخزن قبل از اینكه توسط نفت اشغال شود، كاملاً به وسیله آب اشباع شده بوده است. هیدروكربنهای با دانسیته كمتر به سمت موقعیتهای تعادل دینامیكی و هیدرواستاتیكی مهاجرت میكنند، و سپس آب را از قسمت اعظم سنگ مخزن جابجا میكنند و جای آنرا میگیرند. البته نفت تمام آب را جابجا نخواهد كرد بنابراین سنگ مخزن به طور معمول شامل هیدروكربنهای نفتی و آب میباشد.
به تدریج با انجام آزمایشات مختلف مشخص شد كه كیفیت این آب از لحاظ تركیبات شیمیایی حل شده در آن از یک مخزن هیدروكربنی به مخزن هیدروكربنی دیگر تفاوت دارد. همچنین با افزایش برداشت از یک مخزن هیدروكربنی مقدار آب تولیدی نیز افزایش مییابد. در سالهای گذشته آب تولیدی هنگام استخراج منابع هیدروكربنی به عنوان بخشی از مواد زاید تولید شده در عملیات تولید مورد توجه قرار گرفته است.
در واقع آب تولیدی جزء جدا نشدنی فرایند بازیابی هیدروكربنهاست و در حوزههای نفتی توسعه یافته مقدار آب تولیدی به مراتب بیشتر است.
آب تولیدی كه به آن آب شور (Brine) نیز گفته میشود میتواند شامل آب سازند، آب تزریق شده به مخزن، مقدار كمی آب میعان یافته و مقادیر كمی از تركیبات شیمیایی استفاده شده در عملیات تولید باشد. آب تولیدی بیشترین حجم مواد زاید تولیدی در عملیات تولید مواد هیدروكربنی را تشكیل میدهد. این جریان مواد زاید را میتوان مواد زاید با حجم زیاد و سمیت كم فرض كرد. حجم آب تولیدی از مخازن گازی به مقدار قابل توجهی كمتر از مخازن نفتی بوده ولی آلودگی آلی آن در مقایسه با چاه های نفتی بیشتر می باشد. خصوصیات آب تولیدی نظیر شوری، دانسیته، فلزات و محتوای آلی آن از یک حوزة به حوزة دیگر تفاوت دارد.
تولید جهانی آب تولیدی همراه نفت حدود 250 میلیون بشکه به ازای 80 میلیون بشکه تولید نفت در روز تخمین زده می شود. این رقم نشان می دهد سرعت آب تولیدی به نفت تولیدی 3 به 1 می باشد.
پیشبینی میشود میزان تولید این آب در طی قرن آینده به دو برابر مقدار فعلی افزایش یابد كه این مسئله لزوم توجه بیشتر به مسائل مربوط به مدیریت آب تولیدی را سبب می شود.
نمودار (1-1) میزان آب تولیدی همراه نفت در دریا در دهه های گذشته و پیش بینی آن تا سال های آتی را نشان داده است.
2-1- عوامل مؤثر برحجم آب تولیدی
مدیریت آب تولیدی به دلیل حجم بالا و هزینه بهره برداری سنگین یک فاکتور کاملا کلیدی است. علاوه بر این با توجه به اینکه آب تولیدی یک رخداد طبیعی است، اگر به درستی مدیریت نشود تاثیرات زیست محیطی آن می تواند قابل توجه باشد. برخی از عواملی که می توانند بر حجم آب تولیدی در طی چرخه عمر یک چاه اثرگذار باشند عبارتند از:
1- روش های حفاری چاه
با ثابت بودن تمامی شرایط تولیدی، حجم آب تولیدی از یک چاه عمودی بیشتر از حجم آب تولیدی در یک چاه افقی است.
2- مکان حفر چاه
چنانچه مکان حفر یک چاه در یک مخزن هیدروکربوری با توجه به ساختار آن مخزن به خوبی انتخاب نگردد، بدون توجه به نوع چاه (افقی یا عمودی بودن) میزان آب تولیدی افزایش خواهد یافت.
3- چگونگی تکمیل چاه
هنگام تکمیل یک چاه بایستی به مکانیسم رانش سیالات هیدروکربنی موجود در آن مخزن توجه نمود.
4- نوع تکنولوژی جداسازی آب
از گذشته به منظور جداسازی آب همراه تولیدی از سیالات هیدروکربنی از تجهیزات و تصفیه کننده های سطحی استفاده می شود. البته این روش شامل هزینه های استخراج، تجهیزات و مواد شیمیایی تصفیه کننده می باشد.
5- تزریق آب به منظور افزایش راندمان تولید از مخازن
یکی از راه های افزایش میزان بازده تولیدی از مخازن نفتی، تزریق آب به درون مخزن می باشد. این آب باعث تثبیت فشار مخزن شده و موجب می شود نفت بیشتری تولید گردد. در مقابل این افزایش تولید، آب بیشتری به دلیل پیشروی سریعتر جبهه آب به سمت چاه تولیدی، تولید خواهد شد.
6- آسیب دیدگی دیواره لوله های جداری و چاه
چنانچه دیواره لوله های جداری و چاه در اثر فشارهای موجود، خوردگی، سایش و …. دچار آسیب دیدگی شوند، آنگاه ایجاد ترک یا تغییر فرم در آنها می تواند این اجازه را به آب های سطحی بدهد که به دهانه چاه وارد شوند و به عنوان آب همراه استخراج گردند.
7- مشکلات درون چاهی و زیر سطحی
بعضی مواقع مشاهده می شود که با توجه به میزان آب تولیدی در سطح لازم است تعدادی از شبکه های ایجاد شده تولیدی در دیواره چاه در مخزن مسدود گردند. این عمل موجب کاهش میزان آب تولیدی از چاه خواهد شد، اما چنانچه این انسداد به خوبی انجام نشود مجددا” میزان آب تولیدی از چاه افزایش خواهد یافت.
8- تاثیرات دبی تولیدی از مخزن
تولید از سیالات هیدرو کربنی با بالاترین دبی ممکن باعث می شود که آب همراه موجود در زیر ستون نفت خیلی سریع کانالی درون نفت به سمت چاه زده و مقدار آب همراه تولیدی از چاه را به شدت افزایش دهد. پدیدة مخروطی شدن (coning) آب یكی از عوامل تولید آب اضافی در چاه های تولیدی هیدروكربنی است .در واقع مخروطی شدن آب، بالا آمدن ستون آب در اثر رسوخ جزیی در چاه نفت میباشد كه در نتیجه كاهش فشار در طی تولید جریان نفت رخ میدهد. این پدیده یكی از علل رایج تولید آب بیشتر، بخصوص در مخازنی است كه تحت نیروی محركه آب، جریان نفت بالا میآید.
برخی روشهای رایج جهت كنترل پدیدة مخروطی شدن آب عبارتند از:
1) كاهش روند افت فشار (كاهش فشار با شیب كندتر) به وسیله تولید نفت با نرخ كمتر.
2) تكمیل مجدد چاه و ایزوله كردن یا مسدود كردن حفرههای پایینی.
3) بستن چاه برای كمك به فروكش كردن مخروط آب و سپس بازكردن مجدد آن و تولید نفت با نرخ پایینتر.
در طی فرایند تولید نفت بایستی تا آنجا که ممکن است از تولید بیش از اندازه آب همراه جلوگیری نمود. تولید بیش از اندازه آب همراه نفت مشکلات زیادی را باعث می شود که در زیر به برخی از آنها اشاره شده است.
1) کاهش نسبی تولید نفت
2) کاهش نرخ تولید کلی
3) کاهش میزان بهره دهی تولید نفت
4) افزایش میزان آبی که در مرحله جداسازی باید از نفت جدا شود.
5) افزایش میزان ماسه ناپایدار در اطراف چاه
6) کاهش قابلیت تصفیه پذیری نفت
شیوه های کلاسیک تجزیهی شیمیایی و بیولوژیکی دربرگیرندهی واکنشهایی هستند که در محلول و با افزایش معرفها و نمونهها انجام میگیرند. امروزه تلاش برآن است که بتوان تجزیه را در سیستم بدون معرف انجام داد، استفاده ازروش های دستگاهی که بیشتر از سیگنال حاصل از یک دستگاه برای رسیدن به چنین داده هایی استفاده می شود. مثلا در روش های الکتروشیمیایی، معرف یا واکنشگر روی بستر الکترودی و به صورت تثبیت شده قرار گرفته و در نتیجه نیازی به اضافه نمودن آن توسط کاربر نمی باشد. دو نوع اساسی از اندازه گیریهای الکتروشیمیایی تجزیه، شامل پتانسیومتری و پتانسیواستایی است. هر دو نوع حداقل احتیاج به دو الکترود (هادی) و یک نمونه در تماس با الکترودها (الکترولیت) دارند که پیل الکتروشیمیایی را تشکیل میدهند. بنابراین سطح الکترود، محل ارتباط یک هادی یونی و یک هادی الکترونی میباشد. یکی از این دو الکترود به ماده یا مواد مورد اندازه گیری جواب میدهد و بنابراین به نام الکترود شناساگر یا کار نامیده می شود. الکترود دوم که الکترود شاهد نامیده می شود، دارای پتانسیل ثابت است (پتانسیل آن مستقل از خواص محلول میباشد). امروزه در قلمرو الکتروشیمی یکی از بخشهایی که مورد توجه قرار گرفته طراحی و ساخت الکترودهایی است که در حالت ایدهآل بتوانند به یک گونه شیمیایی خاص به صورت کاملا گزینشپذیر و با حساسیت بالا پاسخ دهند.
در سالهای اخیر استفاده از فناوری نانو، افقهای جدیدی برای استفاده از نانوذرات و نانولولههای کربنی در شیمی تجزیه جهت تشخیص و اندازه گیری برخی از ترکیبات شیمیایی و بیولوژیکی باز کرده است. یکی از کاربردهای جذاب نانوذرات از جمله نانولولههای کربنی تسهیل واکنشهای انتقال الکترون است. به همین دلیل به عنوان یک واسطهگر در ساخت حسگرها و زیست حسگرها استفاده میشوند که سینتیک واکنشهای الکتروشیمیایی کند را تسریع کرده و راهی برای اندازهگیری الکتروشیمیایی آنها فراهم می کند
امروزه از مایعات یونی نیز به دلیل داشتن هدایت الکتریکی بالا در زمینه های مختلف الکتروشیمی استفاده می شود و کاربردهای مختلفی از جمله به عنوان حلال بدون استفاده از الکترولیت زمینه، بهبود خواص الکتروکاتالیزی نانوذرات کربنی از جمله نانولولههای کربنی، پایداری
انواع اصلاحگرها و نیز اصلاح کننده الکترودی پیدا کرده اند ]4-1[.
در این کار پژوهشی از مایع یونی در حضور نانولولههای کربنی جهت اصلاح و بهینهسازی رفتار الکتروکاتالیتی الکترود کربنسرامیک استفاده شده است و انتظار میرود که خواص الکتروکاتالیزی این الکترود در حضور این اصلاح کننده ها بهبود یابد.
2-1- حسگرهای شیمیایی
بطور کلی حسگرها را میتوان به عنوان ابزارهایی که یک کمیت فیزیکی و یا شیمیایی مرتبط با آنالیت را به علایم قابل آشکارسازی تبدیل می کنند، تعریف کرد. حسگرها بسته به آنالیت هدف، انواع متفاوتی دارند که از میان آنها حسگرهای شیمیایی و بیوشیمیایی دارای اهمیت خاصی هستند.
حسگر شیمیایی یک دریافتگر حسی است که محرکهای شیمیایی خاصی را در محیط تشخیص میدهد. قسمت اصلی یک حسگر شیمیایی یا زیستی عنصرحسگر آن می باشد. عنصر حسگر در تماس با یک آشکارساز است. این عنصرمسئول شناسایی و پیوند شدن با گونه مورد نظر در یک نمونه پیچیده است. سپس آشکارساز، سیگنالهای شیمیایی را که در نتیجه پیوند شدن عنصرحسگر با گونه موردنظر تولید شده را به یک سیگنال خروجی قابل اندازه گیری تبدیل می کند. حسگرهای زیستی بر اجزای بیولوژیکی نظیرآنتیبادیها تکیه دارند. آنزیمها، گیرندهها یا کل سلولها میتوانند به عنوان عنصر حسگرمورد استفاده قرار گیرند. حسگرهای شیمیایی شامل لایه حس کننده ای هستند که در اثر برهمکنش گونه شیمیایی (آنالیت) با این لایه، سیگنال الکتریکی ایجاد می شود. سپس این سیگنال تقویت و پردازش می شود. بنابراین عمل حسگرهای شیمیایی شامل دو مرحله اصلی است که عبارتند از: تشخیص و تقویت. به طور کلی وسیلهای که انجام این فرایند را بر عهده دارد، حسگر شیمیایی نامیده می شود. شمایی از این نوع حسگرها در شکل (1-1) آمده است ]5[.
یک حسگر ایدهآل باید خصوصیات زیر را داشته باشد:
– سیگنال خروجی باید متناسب با نوع و میزان گونه هدف باشد
– قدرت تفکیک و گزینشپذیری بالایی داشته باشد
– تکرارپذیری و صحت بالایی داشته باشد
– سرعت پاسخدهی بالایی داشته باشد( در حد میلی ثانیه)
– عدم پاسخدهی به عوامل مزاحم محیطی مانند دما، قدرت یونی محیط و …
حسگرهای شیمیایی را براساس مبدل به کار رفته برای تبدیل تغییر شیمیایی به یک سیگنال قابل پردازش، به چهار دسته تقسیم بندی می کنند: حسگرهای گرمایی، حسگرهای جرمی، حسگرهای الکتروشیمیایی (پتانسیومتری، آمپرومتری، هدایتسنجی) و حسگرهای نوری.
1-2-1- حسگرهای گرمایی
گرما از ویژگیهای عمومی واکنشهای شیمیایی است. بر این اساس، یک فاکتور فیزیکی مناسب برای حسگری، تشخیص و اندازه گیری تغییرات دمای ایجاد شده در حین انجام یک واکنش است که متناسب با تغییرات غلظت آنالیت می باشد. برای این کار فقط مقدار جزئی از محلول، برای کنترل دما نیاز است. در ساخت حسگرهای گرمایی از دو نوع ردیاب گرمایی استفاده می شود. از بین این ردیابها، ترمیستور معمولترین آنها است که به علت قیمت ارزان، دردسترس بودن و حساسیت بالا کاربرد بیشتری دارد. پیروالکتریکها نوع دیگر مبدل های بکار رفته در حسگرهای گرمایی هستند که حساسیت بسیار بالایی برای حسگری گرمایی دارند. با بهره گرفتن از آنها میتوان گرمای جذب شده توسط لایه گاز را ردیابی کرد. شکل(1-2) یک حسگر گرمایی را نشان می دهد ]6[.
2-2-1- حسگرهای جرمی
از اندازه گیری تغییر جرم نیز همانند اندازه گیری گرمای حاصل از یک واکنش، میتوان به عنوان معیار مناسبی برای حسگرهای شیمیایی استفاده نمود. این ویژگی را می توان برای واکنشهایی استفاده کرد که به دلیل خروج یک واکنشگر کاتالیستی انتخابی، تغییری در جرم خالص ایجاد می شود. دو نوع عمده از حسگرهای جرمی وجود دارند که در نوع اول از نوسانگرهای تودهای پیزوالکتریک و در نوع دوم از امواج آکوستیک سطحی استفاده می شود. به طور کلّی در ساخت نوسانگر می توان از کوارتز و پلی وینیل فلوریدین استفاده کرد. شمایی از یک حسگر جرمی در شکل (1-3) دیده می شود ]7[.
و تئوری
1-1- الکتروشیمی تجزیه
الکتروشیمی تجزیهای، شاخهای از مجموعه وسیع شیمی تجزیه است که راههای تجزیهای مبتنی بر فرایندهای الکتروشیمیایی را مورد بررسی قرار میدهد. برگزیدگی واکنشهای الکتروشیمیایی و دقت بالایی که با آن میتوان پارامترهای مرتبط با این واکنشها را اندازه گرفت، روشهای الکتروشیمیایی تجزیه را در ردیف حساسترین و انتخابیترین روشهای تجزیهای تشخیص و تعیین مقدار قرار میدهد.
یکی از ویژگیهای کمنظیر روشهای الکتروشیمیایی تجزیهای، گسترش دامنه کارایی آنهاست، به طوریکه علاوه بر امکان کاربرد آنها به صورت روشهای مستقل، میتوان از آنها برای آشکارسازی نتایج بسیاری از پدیدههای فیزیکی و شیمیایی استفاده کرد. در حال حاضر، محدوده الکتروشیمی تجزیه از معدود روشهای کلاسیک نظیر پتانسیومتری، آمپرومتری، پلاروگرافی، هدایتسنجی و ترسیب الکتریکی فراتر رفته و روشهای جدیدتری که ثمره تلفیق اطلاعات الکتروشیمیایی با تکنولوژی مدرن الکترونیک است، به میان آمدهاند [1]. از نظر تاریخی کار در زمینه ولتامتری با کشف پلاروگرافی توسط شیمیدان اهل چکاسلواکی، ژروسلاو هیروسکی [1] در اوایل دهه 1920 آغاز شد. وی با انجام ولتامتری تجزیهای درسطح الکترود جیوه)پلاروگرافی) در این زمینه جایزه نوبل را دریافت کرد [2]. در سال 1964 طبقه بندی جالبی توسط نیکولسن[2] و شاین[3] با بهره گرفتن از نتایج حاصل از ولتامتری چرخهای[4] ( (CVو روبش خطی[5] (LSV) روی واکنشهای الکترودی صورت گرفت، به علاوه آنها ولتامتری چرخهای را شبیهسازی[6] کردند[3]. در سال1950 ولتامتری به صورت یک روش کاملا پیشرفته به نظر میآمد. به هر حال دهه 1955 تا 1965 شاهد بروز چندین روش اصلاحی اساسی از روش اولیه بود که به کمک آنها بر بسیاری از محدودیتهای روشهای اولیه غلبه شد. تقویتکننده های عملیاتی با قیمت کم، ابداع دستگاههای تجاری نسبتا ارزان را ممکن ساخت، که از این اصلاحات مهم بهره میگرفتند.
1-1-1- اهمیت و مزایای روش های الکتروشیمیایی
روشهای الکتروشیمیایی در مقایسه با روشهای شیمیایی دارای مزیتهای ویژهای هستند که در زیر برخی از این مزایا بیان شده است:
1. یک روش الکتروشیمیایی می تواند انتخابی باشد، در انجام فرایند الکترولیز با اعمال یک مقدار پتانسیل معین به الکترود مورد نظر میتوان واکنش اکسیداسیون و احیا را تا مرحله مورد نظر پیش برد. این در حالی است که در واکنشهای شیمیایی، یافتن یک اکسیدکننده و
یاکاهنده خاصی که دارای نقش انتخابی باشد و بتواند واکنش اکسیداسیون و احیا را تا مرحله خاصی پیش ببرد مشکل است. به عنوان مثال با اعمال ﭘﺘﺎﻧﺴﯿﻞ 52/0– = در محیط اسیدی و در سطح الکترود جیوه میتوان نیتروبنزن را به فنیل هیدروکسیل آمین تبدیل کرد. .
حال آنکه اگر کاهش نیتروبنزن به طریق شیمیایی عملی شود، محصول واکنش آنیلین میباشد.
در مقایسه با روشهای طیفسنجی، دستگاههای مورد استفاده در الکتروشیمی ارزانتر هستند. یک آنالیز طیفسنجی تنها در مورد ملکولهایی می تواند انجام شود که دارای گروههای رنگساز باشند، در غیر این صورت باید مراحل زمانبر و پیچیده مشتقسازی آنالیت را طی کرد. برخلاف روشهای طیفسنجی که اغلب در محلولهای همگن انجام می شود، واکنشهای الکتروشیمیایی در حد فاصل الکترود-محلول انجام میشوند. در اغلب روشهای طیفسنجی نیاز به تهیه محلولهای شفاف و همگن است درحالی که روشهای الکتروشیمیایی در محلولهای کدر نیز قابل اجرا هستند.
روشهای الکتروشیمی تجزیهای، تاثیر متقابل شیمی و الکتریسیته، یعنی اندازه گیری کمیتهای الکتریکی مانند پتانسیل، جریان، بار و ارتباط آنها را با پارامترهای شیمیایی شامل میشوند. چنین استفادهای از اندازه گیریهای الکتریکی برای اهداف تجزیهای، گستره وسیعی از کاربردها را به وجود میآورد که بررسیهای زیستمحیطی، کنترل کیفیت صنعتی و تجزیههای زیست پزشکی را در بر میگیرد.
در دهه های اخیر روشهای الكتروشیمیایی بسیار مورد توجه قرار گرفته است. این روشها در شیمی تجزیه كاربردهای فراوانی دارند از جمله:
1- تعیین مقادیر ناچیز مواد زیستمحیطی
2- جداسازی و خالصسازی تركیبات
3- تعیین ثابتهای سینتیكی و ترمودینامیكی
الکترود به عنوان واسطه انتقال الکترون در واکنشهای الکتروشیمیایی ایفای نقش می کند. موفقیت یک حسگر الکتروشیمیایی، به انتخاب مناسب الکترودها بستگی دارد. یک الکترود ایدهال بایستی دارای ویژگیهایی همچون پایداری مکانیکی، غیرفعال بودن شیمیایی، محدوده وسیع پتانسیل کاری و سطح تکرارپذیر باشد.
استفاده از الکترودهای جامد بدون اصلاحگر[1] به تدریج باعث تغییراتی در سطح الکترود به علت جذب گونه های موجود در محلول و یا محصولات تولید شده از واکنشهای الکتروشیمیایی میگردد. این امر به تدریج موجب غیر فعال شدن سطح الکترود می شود که آن نیز به نوبه خود منجر به کاهش حساسیت و تکرارپذیری به علت ممانعت از انتقال بار میگردد. یکی از راههای فایق آمدن بر مشکلات مذکور استفاده از الکترودهای اصلاحشده میباشد.
[1] Modifier
1Herovsky
[2] Nicholson
[3] Shain
[4] Cyclic voltametry
[5] Linear sweep voltametry
[6] Simulation