1-1- پیشگفتار
فلج شدگی[1] ازکارافتادگی دائم اندامهای تحتانی بدن است که براثر صدمه وارده به نخاع[2] واقع در ستون فقرات، معمولاً ناشی از حوادث یا بیماری، ایجاد می شود. این امر باعث از بین رفتن توانایی کنترل حرکت و احساس در اندامهای پایینتر از سطحی که نخاع آسیبدیده است، میگردد. نوع فلج شدگی به سطح آسیب بستگی دارد و بر اثر فلج شدن ممکن است علاوه بر اندامهای تحتانی بخشی یا تمام اندامهای فوقانی متأثر گردند.
در این قسمت برای بررسی سطح آسیبدیدگی و شناخت اندامهای متأثر شده بر اثر فلجشدگی آناتومی نخاع و ستون فقرات انسان را بررسی میشود.
2-1- آناتومی نخاع و ستون فقرات
طناب نخاعی از سوراخ پس سری[1] تا سطح نخستین یا دومین مهره کمری امتداد مییابد. سوراخ پس سری، سوراخی است بزرگ در استخوان پس سر که مغز و نخاع در آنجا به یکدیگر متصل میشوند. طناب نخاعی، نخاع شوکی نیز خوانده میشود. از برجستگی کمری به پایین، نخاع شوکی باریک شده و تا ناحیه مخروط انتهایی[2] که دربرگیرندهی بخشهای خاجی[3] طناب نخاعی است ادامه دارد. مخروط انتهایی، پایینترین ناحیه تنه نخاع است.
نخاع دو وظیفه اصلی را بر عهده دارد: اول آنکه اعصابی را در بر دارد که نواحی حسی و کنترل حرکتی[4] مغز را به سایر قسمت های بدن متصل می کند. این اعصاب مسیرهایی را برای هدایت پالسها از دریافتکننده های حسی[5] بدن به مغز و سپس در جهت عکس توسط عصبهای حرکتی به ماهیچهها و غدد فراهم می کند. دوم آنکه نخاع مستقیماً اعصاب حسی را به اعصاب حرکتی مناسب برای ایجاد پاسخ، بهصورت مستقل از مغز متصل می کند که این امر بهعنوان واکنش نخاعی[6] شناخته می شود. نخاع درون کانال داخلی ستون فقرات[7] قرار دارد. اعصاب نخاعی بهطور کلی به چهار بخش تقسیم میشود که متناظر با ناحیهای از ستون فقرات هستند که در آن قرارگرفتهاند. این بخشها عبارتند از: 1-گردنی[8] 2- سینهای[9] 3-کمری[10] 4 – خاجی[11] ( شكل1-1 ).
اعصاب نخاعی ۳۱ جفت است که از طناب نخاع منشعب میگردند که عبارتاند از: 1-اعصاب گردنی، هشت زوج 2-اعصاب سینهای، دوازده زوج 3-پنج زوج کمری 4-پنج زوج خاجی 5-یک زوج دنبالچهای.
به علت ارتباط نخاع با ۳۱ جفت عصب نخاعی، طناب نخاعی را به ۳۱ قطعه (سگمنت) تقسیم میکنند. یک قطعه نخاعی، استوانهای از طناب نخاعی است که یک عصب نخاعی به آن اتصال مییابد. با توجه به اینکه طول نخاع بهطور متوسط حدود ۲۵ سانتیمتر کمتر از طول ستون فقرات است، بنابراین قطعات نخاعی از سطح گردنی بهطرف انتهاییترین قسمت نخاع در مقایسه با مهرههای همنام، یکسان نبوده و بهتدریج از هم دورتر میگردند. بهعنوان مثال قطعه اول نخاعی (C1)، در سطح مهره اول گردنی قرار میگیرد، در حالی که قطعه اول خاجی (S1) در مجاورت مهره اول کمری است که در شكل1-1 قابلمشاهده است. از هشت زوج عصب گردنی، هفت عصب بالاتر از سطح مهرهی مربوط به خود از نخاع خارج میگردند و فقط زوج هشتم گردنی از زیر مهره هفتم عبور میکند. عصبهای نخاعی سینهای، کمری و خاجی از زیر مهرههای مربوط به خود خارج میشوند.
3-1- صفحات آناتومی بدن انسان و نامگذاری درجات آزادی مرتبط با آن در پایینتنه
بهمنظور طراحی، بهبود و یا بررسی ساختار ارتزهای مورد استفاده در اندام تحتانی، نیاز به شناخت آناتومی بدن انسان در قسمت پایینتنه و درجات آزادی موجود در این قسمت احساس میشود. پای انسان در حالت کلی بهصورت یک سازه با هفت درجه آزادی مدل می شود ، به این ترتیب که سه درجه آزادی در مفصل ران ( لگن)، یک درجه آزادی در مفصل زانو و سه درجه آزادی در قوزک پا خواهیم داشت. شكل1-2 صفحات آناتومی بدن انسان را نشان میدهد و همچنین شكل1-3 یک مدل سادهشده از بدن انسان را در درجات آزادی
موجود در هر صفحه، به نمایش میگذارد. در این جا، به دوران مفاصل در صفحهی طولی خمش[1] و کشش[2] اطلاق می شود (برای مچ پا الفاظ خمش به عقب[3] و خمش به کف پا[4] به ترتیب بهجای خمش و کشش استفاده می شود). علاوه بر این، حرکت مفصل ران و مچ پا در صفحهی عرضی بدن، دور شدن [5] (هنگامی که پا از بدن دور می شود) و نزدیکی[6] (هنگامی که پا به بدن نزدیک می شود) نامیده میشوند. به درجات آزادی باقیمانده برای ران و قوزک پا دوران[7] میگویند ( شكل1-3 ).
4-1- انواع آسیب دیدگی های نخاعی
امکان آسیب نخاع در هر سطحی از طناب نخاعی وجود دارد. احتمال آسیب در دو ناحیه (C6-C7) و (T12-L1) بیشتر از سایر نواحی طناب نخاعی است که علت آن تحرک زیاد یک قسمت و ثبات (تحرک کمتر) در ناحیه دیگر است. ضایعات ناکامل نخاع در اثر ضربات وارده به طناب نخاعی در ناحیه گردن شیوع بیشتری در مقایسه با قسمت سینهای دارد. سطحی از نخاع که در آن آسیبدیدگی ایجادشدهاست و میزان شدت آسیبدیدگی، درجات متفاوتی از ناتواناییهای عصبشناختی[1]را ایجاد می کند.
آسیبدیدگیهای نخاعی ممکن است کامل یا ناقص باشد. در آسیبدیدگیهای نخاعی کامل، نخاع کاملاً قطع میگردد و توانایی کنترل حرکات ارادی و همچنین احساس در سطوح زیر آسیبدیدگی کاملاً از بین میرود. دو نوع اصلی از آسیبدیدگیهای نخاعی ناقص وجود دارد. در نوع اول تمام اعصاب در یک سطح خاص آسیب میبینند، اما این امر باعث قطع کامل عملکرد آن ها نمی شود. در نوع دیگر بخشهایی از نخاع کاملاً آسیب دیدهاند درحالیکه بقیه قسمت ها سالم ماندهاند.
هرچه آسیبدیدگی در سطح بالاتری اتفاق افتد و هرچه شدت آن بیشتر باشد، میزان ازدسترفتگی احساس و ناتوانی در کنترل حرکت اندام تحتانی بیشتر است. اگر ضایعه نخاعی در سطح گردنی باشد، با توجه بهشدت آسیب باعث ایجاد ضعف اندامها یا فلج چهار اندام میگردد. ضایعه در سطح سینهای یا ناحیه کمری منجر به ضعف اندامهای تحتانی یا فلج اندامهای تحتانی میشود.آسیبهای رشتههای دماسبی، نمای بالینی ویژهای بهصورت فلج شل دو پا، بیاختیاری ادرار و مدفوع و همچنین بیحسی نسبت به درد و حرارت در ناحیه زینی[2] ایجاد میکنند.
در مورد آسیبهای کامل، سطح آسیب وارده توانایی بیمار برای انجام فعالیتهای مختلف را تحت تأثیر قرار میدهد. سطح T1 بالاترین سطح آسیبدیدگی است که در آن فرد توانایی اندام فوقانی خود را کاملاً حفظ می کند، اما توان ایستادن و راه رفتن را از دست میدهد. در آسیبدیدگی در سطوح T2 تا T5 بیمار دارای اندکی توانایی برای کنترل تنه است و ممکن است با بهره گرفتن از عصا بتواند بایستد. در سطوح T6 تا T12 فرد ممکن است بتواند با بهره گرفتن از عصا برای فواصل کوتاه راه برود. بیماران سطح L2 تمام حرکات تنه و مفصل کمر را دارند، در حالی که بیماران L3 میتوانند زاویه زانو را نیز تغییر دهند. بیماران سطح L4 میتوانند، ساق پا و قوزک را بهگونهای کنترل کنند که خمش به عقب [3] ایجاد کنند. بیماران سطوح S1 و S2 میتوانند پا را در جهت خمش به کف پا [4] نیز حرکت دهند و مستقلاً بر روی تمام سطوح صاف و ناصاف بدون عصا راه بروند. رشتههای عصبی منشعب شده از نخاع در شكل1-4 نمایش دادهشدهاست. با مقایسه شكل1-1 و شكل1-4 میتوان درک بهتری از سطح آسیبدیدگی در ستون فقرات و ارتباط آن با از دست دادن توانایی کنترل حرکتی و حسی را به دست آورد.
[1]Neurological
[2]Saddle anesthesia
[3]Dorsiflexion
[4]Plantarflexion
[1]Flexion
[2]Extension
[3] dorsiflexion
[4] Plantar flexion
[5]Abduction
[6]Adduction
[7]Rotation
[1] Foramen magnum
[2] Conus medullaris
[3] Sacral
[4]Motor Control
[5] Sensory Receptors
[6]Spinal Reflex
[7]Vertebral Canal
[8]Cervical
[9]Thoracic
[10]Lumbar
[11]Sacral
1 Paraplegia
[2] Spinal Cord
ای باشد(هر چند کوتاه) بر روابط استفاده شده در فصول بعدی. در فصل سوم مروری شده است بر کارهای صورت گرفته در زمینه رفتار قطره تحت میدان. در فصل چهارم نتایج آزمایش تجربی آورده شده اند. در فصل پنجم رفتار قطره بصورت عددی مورد بررسی قرار گرفته است. در انتها در فصل ششم به بررسی نتایج تحلیلی ( اثر میدان الکتریکی بر روی قطرات ) پرداخته شده است. نتایج تجربی نشان میدهد که دو قطره با بار متضاد میتوانند همدیگر را دفع کنند .پراکندگی قطرات در میدان الکتریکی منجر به تشکیل زنجیره قطرات میشود. همچنین انتقال بارهای الکتریکی میتواند بطور یکسان صورت نگیرد و پدیدههای مختلفی را رقم بزند. افزایش میدان الکتریکی برای قطراتی که به شکل رندم پخش شده اند باعث تشکیل زنجیرهای از قطرات میگردد. رفتار نوسانی ، حالت تیلورکن ، اندرکنش دو قطره (انعقاد و جدایش) در این کار نشان داده شده است. نتایج عددی و تحلیلی تغییر شکل قطره را در دو حالت متفاوت (قابلیت پلاریزاسیون) نشان میدهند. در فصل عددی شبیه سازی توسط روش شبکه بولتزمن و در حالت دو فازی صورت گرفته است. حالت های مختلف Breakup به کمک روش عددی بدست میآیند.سه نوع جدایش pinch-off ،shear و back-breakup در حالتهای مختلف دیده شده و همچنین رفتار دو قطره نیز بررسی شده است. در بحث تحلیلی، رفتار قطره در حالت ناپایدار و در دو حالت AC,DC مورد ارزیابی قرارگرفته است. در این اثر علاوه بر رفتار قطره ساکن ، حرکت قطره در میدانهای AC,DC مورد بررسی قرار گرفته است. نتایج تحلیلی فرکانس بحرانی را پیشبینی میکنند که میتواند راستای تغییر شکل قطره را تغییر دهد. همچنین نتایج تحلیلی مطابقت خوبی با نتایج عددی دارند. تمامی نتایج تحلیلی در اعدادکپیلاری الکتریکی کمتر از یک بدست آمده است. اثر میدان الکتریکی بر روی قطره در حال سقوط منجر به تشکیل گردابه هایی در درون و بیرون قطره میشود که پخش حرارت توسط این ورتکسها توسط روش عددی ترکیبی المان و حجم محدود مورد بررسی قرار گرفته است. افزایش عدد پکلت باعث کاهش اثر پخش حرارتی (ترم دیفیوز) شده و نقش جریان سیال در توزیع حرارت بیشتر میگردد.
فصل اول: آشنایی باکاربردهای الکتروهیدرودینامیک
یک میدان الکتریکی را در داخل سیال در نظر بگیرید.تاثیر متقابل این میدان الکتریکی با جریان سیال را الکترو هیدرودینامیک[1]
مینامند.یکی از روش های ایجاد الکتروهیدرودینامیک،استفاده از جریان یونها است.اگر حرکت یونها را در میدان الکتریکی در نظر بگیریم،این یونها زمانی که از یک الکترود به سمت الکترود دیگر حرکت می کنند،درطول مسیر ذرّات سیال را بهمراه خود میکشانند و باعث ایجاد جریان در داخل سیال میشوند.برای تولید این یونها در سیال روش های مختلفی وجود دارد (از جمله ایجاد میدان متمرکز و شدید الکتریکی در داخل سیال).میتوان گفت این رشته تحقیقاتی با توجه به اندازه یونها در مقیاسهای کوچک پتانسیل کاربردی بیشتری دارد.در مقیاسهای کوچک میتوان میکروپمپ و در سایزهای بزرگ میتوان از مبدلهای حرارتی نام برد.از این رشته میتوان در پالایش هوا،فیلترهای یونی،جداسازی ذرّات معلّق و … استفاده نمود.این رشته ترکیبی از رشتههای شیمی،فیزیک،مکانیک و الکترومغناطیس میباشد.مثلاً در شیمی،میتوان به بررسی فعل وانفعال یونها در سطح الکترودها پرداخت و یا در الکترومغناطیس بر روی نحوه ایجاد میدان موّثر بر سیال و در مکانیک بر روی جریان و حرکت سیال کارکرد.
از جمله کاربردهای این رشته میتوان فرایند نمک زدایی[2] را نام برد.جهت جمع آوری ذرّات نمک در محلول(آب دریا) و رقیق سازی آن سعی می شود تا از بهم پیوستگی[3] قطرات آب ، افزایش حجم و جرم قطرات جهت جداسازی فازها استفاده نمود.برای این کار از میدان الکتریکی استفاده می کنند.دی هیدراتورها[4] بر اساس سه نوع میدان الکترواستاتیک کار می کنند[1].
– جریان مستقیم(DC)
– جریان متناوب(AC)
– جریان ترکیبی(AC/DC)
جریان های DC بسیار کارامد هستند ولی باعث خوردگی الکترودها میشوند.در مواقعی که از نفت خام[1] استفاده می شود باید از منابع تامین ولتاژ قوی تر (میدان های الکتریکی چند فرکانسی) استفاده نمود.روغن خام دارای ویسکوزیته و هدایت الکتریکی بالاست. جریان های DC در روغن های تصفیه شده استفاده میشوند در حالی که جریان AC در اکثر موارد کاربرد دارد.همچنین ترکیب AC/DC هم می تواند به عنوان میدان موثر استفاده شود.جریان AC در دی هیدراتورها جهت ایجاد میدان بین الکترود باردار و الکترود زمین استفاده می شود(شکل 1-1).
همانطور که نشان داده شده، یک گرادیان AC ضعیف بین الکترود (+) و سطح مشترک روغن و آب و یک گرادیان AC قوی بین الکترود (+) و(-) تشکیل می شود.روغن وارد شده به مخزن که در بالای سطح آب قرار دارد سریع منعقد می شود و سپس شاهد بهم آمیختگی بیشترتوسط میدان AC قوی خواهیم بود و این در حالی است که روغن موجود در بالای الکترود(-) هیچ انعقادی ندارد چون اصولاً میدانی در آن جا وجود ندارد. امروزه از ترکیب AC/DC در فرایند جداسازی استفاده می شود.در این نوع جداسازها ترکیبی از الکترودها بصورت موازی و عمودی و بصورت قطری در سراسر دریچه و کمی بالاتر از خط مرکزی قرار میگیرند.در این وسایل از یک یا سه انتقال دهنده شامل دو قطبیهای معکوس جهت ایجاد میدان DCبین الکترودهای مجاور استفاده می شود. در بررسی نیروهای وارده به قطره آب،فرض کنید قطرهای در میان دو الکترود قرار دارد.پنج نیرو را برای این قطره میتوان در نظر گرفت.دو نوع از این نیروها وزن و هیدرولیک میباشند.نیروی گرانش که برابر وزن قطره است و باعث حرکت به سمت پایین می شود.نیروی درگ که از طرف سیال احاطه کننده قطره (روغن) باعث ایجاد (نیروی لیفت) می شود.اگر قطره آب بزرگتر از قطر قطره استوکس[1] باشد،آنگاه وزن بر درگ غلبه کرده
و باعث جدایش آب از روغن میگردد. جهت بهبود روند جداسازی قطرات،میدان الکتریکی باید قابلیت ایجاد انعقاد قطرات را بالا برده و از این طریق باعث افزایش قطر قطرات نسبت به قطر استوکس گردد.
سه نوع نیروی الکترواستاتیک را برای یک قطره میتوان متصوّر بود.
– نیروهای دو قطبی (Dipolar)
– نیروهای (Electrophoretic)
– نیروهای (Di-Electrophoretic)
نیروی دو قطبی نیروی بین مولکولهای آب است که متناسب با گرادیان میدان الکتریکی ،قطر قطره و فاصله بین قطرات است. نیروی
الکترو فورتیک می تواند جاذب یا دافع باشد.این نیروها در یک میدان ولتاژ یکنواخت و بین قطره باردار و الکترود شکل میگیرند.این نیرو متناسب با قدرت میدان،قطر قطره وهدایت الکتریکی روغن میباشد. نیروهای دی الکتروفورتیک در یک میدان غیر یکنواخت تولید میشوند و نیروهای جاذب میباشند.این نیروها باعث راندن قطره به سمتی میشوند که گرادیان ولتاژ در آن قسمت بیشتر است.این نیرو متناسب با قطر قطره و هدایت الکتریکی آن است.
این سه نیرو در اغلب دیسالترها دیده میشوند ولی مقدار این نیروها میتوانند با توجه به تغییر میدان الکتریکی جهت رسیدن به انعقاد و جداسازی بهتر تغییر کنند.هنگامی که قطرات منعقد شوند،فاصله بین آنها بیشتر شده و این باعث کاهش نیروی دو قطبی
میگردد.همچنین نیروی الکتروفورتیک مستقل از فاصله قطره میباشد ولی به هدایت الکتریکی و ویسکوزیته روغن وابسته است. نیروی الکتروفورتیک زمان ثابتی دارد متناسب با نسبت ثابت دی الکتریک به هدایت الکتریکی.در روغنهای با هدایت بالا میزان این نیرو شدیداً کاهش مییابد.نیروی دو قطبی بین دو قطره در پایین دیسالترها (جایی که جزء آبی بیشتری وجود دارد،بالاتر است و قطرات در فضای کمتری نسبت به هم قراردارند. نیروهای دی الکتروفورتیک قطرات را بسمت نگهدارندههای الکترود میفرستند و باعث افزایش میزان قطرات و در نتیجه نیروی دو قطبی میشوند. در جریان DC یکنواخت بین دو الکترود،نیروی الکتروفورتیک در جلو و عقب راندن قطره بین دو الکترود موّثر است.هنگامی که قطره بسمت الکترود تحریک شده نزدیک می شود،بار همان الکترود را میگیرد.در این هنگام نیروی الکتروفورتیک قطره را به سمت الکترود با بار مخالف میراند. بنابراین این نیرو باعث ایجاد حرکت و تغییر مکان قطرات بین دو الکترود می شود.در نتیجه این حرکت انعقاد موثر،تولید قطره با سایز بزرگ و جداسازی سریع را میتوان انتظار داشت.
در دیسالترها خواص فیزیکی نظیر،ویسکوزیته و دانسیته روغن و آب نیز موثرند.با بهره گرفتن از این مقادیر میتوان قطر شناوری را مشخص نمود.تمامی قطرات بزرگتر دارای وزن کافی جهت غلبه بر نیروی ویسکوز خواهند بود و روی سطح مشترک جمع می شوند. ویسکوزیته روغن با دما نسبت معکوس دارد.افزایش دما باعث کاهش ویسکوزیته و در نتیجه نشست قطرات می شود ولی افزایش دما بر روی اختلاف دانسیته نیز تاثیر گذاشته و نرخ جدایش را تحت تاثیر قرار میدهد.بنابر این بالانس بین نرخ روغن،اختلاف دانسیته و
ویسکوزیته روغن جهت بهبود عملکرد ضروری به نظر میرسد.این پارامترهای طراحی،متغیرهای اولیه در بررسی عملکرد میباشند.دو پارامتر کلیدی دیگر که بر روی فرایند الکترواستاتیک و کارامدی آن تاثیر میگذارند،کشش سطحی[1] و هدایت الکتریکی روغن
میباشند.
کشش سطحی بالا انعقاد قطره را مشکل می کند در حالی که کشش سطحی پایین ،فرایند انعقاد را آسانتر می کند ولی باعث می شود قطره منعقد شده راحت تر گسسته گردد و باعث ناپایداری آن می شود.بار قطره بالا و یا افزودنیهای شیمیایی[2]،باعث کاهش
کشش سطحی و افزایش نرخ گسستگی[3] میشوند.هدایت الکتریکی قطره نتیجه وجود مواد آلی و غیر آلی دارای قطب مغناطیسی و یا الکتریکی،ذرّات آب،ذرّات جامد هادی میباشد.هر چه هدایت الکتریکی روغن بالا باشد،تاثیر معکوس بر روند نیروی الکترواستاتیک خواهد داشت.همانطور که نشان داده شده قطرات کوچکتر احتیاج به ولتاژ بالا جهت غلبه بر کشش سطحی دارند.اما اگر ولتاژ خیلی بالا باشد گسیختگی قطره را بدنبال دارد. دو ولتاژ جهت انجام کامل فرایند آب زدایی در نظر گرفته می شود.اولین ولتاژ،ولتاژ آستانهای است.میدانی را در نظر بگیرید که در آن ولتاژ به آرامی افزایش مییابد.در یک ولتاژ خاص جریان به شدّت افزایش مییابد و این نشان دهنده شارژشدن الکتریکی آب است. به محض شارژ شدن نمودار نزول مییابد که نشان از انعقاد قطره آب دارد.برای روغن خالص،چنین افزایش جریانی وجود ندارد و در واقع شیب جریان نسبت به ولتاژ ثابت و برابر هدایت الکتریکی روغن است. هنگامی که محدوده کاربرد ولتاژ زیر محدوده آستانهای است انرژی الکترواستاتیک کافی جهت انعقاد اولیه وجود ندارد.در ولتاژهای نزدیک به ولتاژ آستانهای قطر قطرات ماکزیمم میشوند.در ولتاژ کمتر از ولتاژ آستانهای ،قطرات با قطر کمتر دارای انرژی لازم نیستند و پدیده جدایش آب و نمک به خوبی صورت نمی گیرد.برای آب زدایی کامل ،تمامی آب موجود باید به قطرات با قطر بزرگتر از استوکس منعقد شوند تا از روغنی که به سمت بالا حرکت می کند جدا شوند.انعقاد قطرات کوچکتر احتیاج به میدان قوی تر جهت ایجاد نیروی الکترواستاتیک لازم دارد.اما افزایش ولتاژ باعث افزایش نیروی الکترواستاتیک در قطرات بزرگتر هم می شودکه گسیختگی را به همراه دارد. بنابراین ولتاژ به کار گرفته شده نباید از ولتاژ شکست بیشتر شود.به این ولتاژ،ولتاژ بحرانی گویند. افزایش ولتاژ بعد از این مرحله، باعث تشکیل قطرات کوچکتر و در نتیجه کاهش عملکرد آب زدایی خواهد گردید.
توانایی و قابلیت الکتریسیته در کنترل شکل و موقعیت قطرات بر روی سطوح جامد منجر به کاربرد این روش در زمینه های بیوالکترومکانیک[4] شدهاست.یک قطره باردار می تواند به عنوان یک میکروراکتور استفاده شود.در حال حاضر کاربرد اصلی قطرات در میکروسیالها،قابلیت کنترل و انتقال آنها در این نوع وسایل میباشد.در واقع این سیستمها از پدیدههای ناشی از باردار شدن قطره بر روی الکترود (و روغن به عنوان سیال پیرامون) استفاده مینمایند.هنگامی که قطره نزدیک الکترود می شود،دچار تغییر شکل شده و به حالت کشیده در میآید.به دلیل این که قطره مورد نظر نسبت به محیط دی الکتریک اطراف هادی تر است ، لذا نسبت به روغن راحت تر پلاریزه می شود[5] .بنابر این بارهای مخالف الکترود بر روی سطح مشترک روغن و آب وکنار الکترود جمع میشوند.چون الکترود صفحهای است بارهای بیشتری در سطح مشترک روغن و آب کنار قطب قطره (که با الکترود تماس دارند جمع میشوند).نیروی الکتریکی در اثر بارهای تجمع یافته افزایش مییابد و این امر باعث کاهش فاصله الکترود و قطره می شود.بنابراین قطره در هنگام تماس با الکترود نوک تیز می شود.این نوک تیز،سرانجام باعث تماس کامل قطره و الکترود شده و در تماس با الکترود بار الکترود را میگیرد.به این پدیده باردار شدن قطره[6] (ECOD)گویند. سوالی که در این جا مطرح است این است که قطره چه میزان از بار الکترود را در یافت می کند.پژوهشهای اخیر تا حدودی توانسته اند پاسخ این سوال را بدهند[2].دیجیتال میکرو فلویدیکها [7] روش هایی هستند که بر اساس (ECOD) کار می کنند.مزیت (DMF) در این است که انتقال قطره سریع بوده و اثرات سطح ناچیز میباشد.
جهت بررسی (DMF) تراشهای مطابق (شکل1-3) در نظر بگیرید.الکترودها بصورت آرایهای بر روی سطح آب گریز[8] قرار گرفتهاند.بطوریکه توسط یک سوییچ الکتریکی به منبع تغذیه ولتاژ بالا وصل هستند.با توجه به این که روغن اطراف سیلیکون است ،آب بصورت قطرات کروی بر روی سطوح آب گریز قرار میگیرد که برای پروسه (ECOD) بسیار مناسب میباشد.
تحریک قطره با دادن ولتاژ متوالی (a-b) به الکترودها انجام میپذیرد.ترتیب ولتاژ بصورت [+:-:0] و سپس [0:+:-] است که می تواند معیاری برای زمان انتقال قطره باشد.هنگامی که یک ولتاژ به کار گرفته می شود قطره به الکترود نزدیک می شود و بار الکترود را
میگیرد و سپس به سمت الکترود مخالف حرکت می کند.در زمانی که قطره به الکترود کناری میرسد،ولتاژ جفت الکترود قبلی قطع شده و به جفت الکترود بعدی داده می شود.لذا قطره شارژ شده مطابق میدان الکتریکی منتقل میگردد. میکرو کنترلر ولتاژ پی در پی را جهت کنترل حرکت قطره می فرستد.یک منبع تغذیه چند کاناله قابل برنامه ریزی توسط رلهها به اجزاء خود متصل میگردد.در بعضی از وسایل از الکترودهای نقطهای استفاده می شود.
تفلون به عنوان سطح آبگریز و الکترود مسی با مقطع دایروی استفاده می شود.این الکترودها به سیستم میکروکنترلر متصل میشوند.همانطور که در بحث حرکت تک قطره مطرح شد،میتوان انعقاد دو قطره را نیز به همین طریق کنترل کرد.در ابتدا دو قطره بطور مجزا توسط نازل[1] بر روی سطح قرار میگیرند و سپس یک جریانDC به الکترودها تزریق می شود.در حرکت مستقیم یک میدان الکتریکی بین سومین و ششمین الکترود ایجاد می شود و به محض قطع ولتاژ بین سومین و ششمین الکترود،یک میدان بین ششمین و نهمین الکترود ایجاد میگردد که باعث رانش قطره به سمت الکترود نهم میگردد.( شکل1-4).بطور مشابه میتوان توسط نیروی کلمب یک حرکت دورانی نیز ایجاد نمود.بطوریکه ابتدا میدان الکتریکی بین الکترودهای ششم ونهم ایجاد می شود و سپس هشتم ونهم(زمانی که قطره به الکترود نهم رسیده و ولتاژ بین الکترود ششم ونهم قطع شدهاست).قطرهای که توسط الکترود ششم شارژ شده بود،از الکترود نه به سمت الکترود هشت حرکت می کند.در طول انتقال قطره از الکترودی به الکترود دیگر،تماسی با سطح صورت نمیگیرد و این امر از نمای جانبی مشخص است(شکل1-5).به دلیل اختلاف دانسیته کم ،قطره سعی دارد در مسیر کمان شکل که در اثر میدان ایجاد شده حرکت کند.بنابر این قطره در حین حرکت به سختی به الکترود میچسبد و یا با آن تماس دارد.عدد باند[2] معرف میزان اثر کشش سطحی است().اگر این عدد بی بعد کوچک باشد،آنگاه کشش سطحی غالب بوده و میتوان یک قطره ساکن را کروی در نظر گرفت.(: اختلاف دانسیته دو فاز و : طول مشخصه میباشد).
هنگامی که دو قطره با بار مخالف به یکدیگر نزدیک میشوند به دلیل نیروی کلمب یک پل بین آنها تشکیل می شود(شکل1-6).این پل نقش یک هادی را جهت انتقال بارها از یک قطره به قطره دیگر دارد.بعداز انتقال بار قطره خنثی می شود(اگر دو قطره دارای یک میزان بار اما با علامت مخالف باشند).اما باید متذکر شد که این قطره در معرض پلاریزاسیون الکتریکی است لذا نیروی الکتریکی در صدد است تا این قطره را به دو قطره دیگرمجدّداً تجزیه نماید.از سوی دیگر،نیروی کشش سطحی تمایل دارد تا قطره کروی (ناشی از برخورد دو قطره)حفظ شود.بنابراین اگر نیروی الکتریکی ضعیف تر از نیروی کشش سطحی باشد ، قطره شکل کروی خود را حفظ می کند اما اگر نیروی الکتریکی بیشتر باشد قطره دوباره تجزیه شده و دو قطره در جهت مخالف حرکت می کنند. اهمیت نسبی تغییر شکل در اثر نیروی الکتریکی به بقاء شکل در اثر کشش سطحی توسط عدد بی بعد وبر[1] الکتریکی سنجیده می شود.در این جاقطر انعقاد ناشی از برخورد دوقطره(بدون تغییر شکل) میباشد.همیشه یک مقدار مرزی مشخص برای وبر الکتریکی وجود دارد که بین فرایند یکپارچه شدن و جداشدن قطرات تمایز قائل می شود.هنگامی که قطره انعقاد شده بار خالص صفر داشته باشد حرکت این قطره در میدان بسیار مشکل میباشد. میزان بار جمع شده از طریق قطره از الکترود متناسب توان 1.59 از شعاع آن است.اگر قطره کاملا هادی باشد(شکل کروی) توان 2 در نظر گرفته می شود.دانسیته بار سطحی [2] متناسب با میزان میدان الکتریکی است.در نتیجه میتوان از (ECOD) در انتقال مولکولهای DNA از طریق قطرات بهره جست.
[1] Weber
[2] Surface charge density
[1] Micropipette
[2] Bond
[1] Interfacial tension
[2] surfactants
[3] Breakup
[4] Bio-EMS
[5] Polarized
[6] Electrical charging of drop (ECOD)
[7] Digital Micro Fluidics(DMF)
[8] Hydrophobic
[1] Stokes
[1] Crude oil
[1] Electro Hydrodynamic(EHD)
[2] Desalination
[3] Coalescence
[4] Dehydrator
قطعات مخروطی در صنعت و بطور خاص در صنایع نظامی، دارای کاربرد گستردهای میباشند. یکی از رایجترین فرایندهای شکلدهی ورقهای فلزی، فرایند کشش عمیق است. شکلدهی قطعات مخروطی با این فرایند موضوع دشوار و پیچیدهای محسوب میگردد ]1و2[. شکل (1-1) شماتیک فرایند مذکور را برای شکلدهی یک قطعه مخروطی نشان میدهد. همانطور که در شکل نشان داده شده است، به دلیل تماس کم سطح ورق با سنبه در مراحل اولیه شکلدهی، تنشهای زیادی در ناحیه تماس با نوک سنبه، به ورق اعمال میشود که موجب پارگی آن میگردد. بعلاوه، از آنجا که بخش عمدهای از سطح ورق در ناحیه بین نوک سنبه و ورقگیر آزاد است، در صورت کشیده شدن ورق، در دیواره قطعه مخروطی چروک ایجاد میشود. شکل (1-2) چروکهای بوجودآمده در قطعه مخروطی و همچنین پارگی ایجاد شده در نوک قطعه را که با روش کشش عمیق سنتی توسط نگارنده کشیده شده است، نشان میدهد. از این رو، قطعات مخروطی در صنعت عموماً با کشش عمیق چند مرحلهای ]1[، اسپینینگ ]2[ یا با شکلدهی انفجاری ] 3و4 [ شکل داده میشوند. این روشها علیرغم دارا بودن مزیت امکان شکلدهی قطعات مخروطی، دارای محدودیتهایی نیز هستند. در کشش عمیق چند مرحلهای، به چندین مجموعه قالب نیاز است. بعلاوه، به ازای هر مجموعه قالب باید نوعا پرس و اپراتور تامین گردد. همچنین، با تغییر در شکل و اندازه قطعه باید قالب جدیدی طراحی و ساخته شود که این موضوع سبب افزایش قابل ملاحظه در قیمت محصول میگردد. از طرف دیگر، دستیابی به قطعه مخروطی با نوکتیز در این روش بسیار دشوار است]1[. در روش اسپینینگ برای تولید قطعه، نیاز به تامین دستگاه های خاص میباشد. دستگاهی که بتوان با آن قطعات پیچیده و دقیق را ایجاد کرد، باید خودکار باشد که در آن صورت دارای قیمت بالایی خواهد بود. بعلاوه، دستگاه اسپینینگ برای تولید قطعات خیلی کوچک یا بزرگ دارای محدودیت میباشد. در روش اسپینینگ برای اینکه ورق بر روی مندرل قرار گیرد نیاز به یک ابزار خاص میباشد. این ابزار دستیابی به نوکتیز را برای قطعه مخروطی با محدودیت مواجه میسازد]2[. روش شکلدهی انفجاری نیاز به تجهیزات خاصی دارد و بعلاوه، با توجه به حساسیت زیاد موضوع انفجار، این روش در موارد خاص کاربرد دارد و ایمنی در آن نقش مهمی را ایفا میکند. در این روش سرعت تولید قطعات پایین است و تنظیم پارامترها بسیار مهم میباشد ] 3و4 [.
در طی سالهای اخیر فرایند هیدروفرمینگ به عنوان یک جایگزین مناسب برای شکلدهی قطعات پیچیده ورقی از سوی صنایع مختلف مورد توجه قرار گرفته است. روش کشش عمیق هیدروفرمینگ یک نوع روش کشش عمیق است که در آن از یک سیال تحت فشار، بطور خاص در درون محفظه فشار، به عنوان محیط تغییر شکل دهنده استفاده میشود]5[. قطعاتی که با هیدروفرمینگ تولید میشوند در مقایسه با كشش عمیق سنتی، دارای مزایای قابل توجهی میباشند كه از آن نمونه میتوان به نسبت كشش بیشتر (نسبت قطر ورق اولیه به قطر سنبه در صورتی که قطعه بصورت کامل و بدون عیب کشیده شود)، عملیات ثانویه کمتر، حذف جوشکاری، بهبود بخشیدن به استحكام و چقرمگی، كاهش هزینه قالب، كیفیت سطح بهتر، كاهش برگشت فنری، دقت ابعادی بالاتر و قابلیت شكلدهی اشكال پیچیده اشاره كرد]6[.
پارامترهای موثر بر فرایند هیدروفرمینگ شامل فشار اولیه داخل محفظه قالب، مسیر فشار، نسبت کشش، هندسه سنبه و ورق، جنس ورق و ضریب اصطکاک میباشد]5[.
استفاده از سیال برای شکلدهی یا هیدروفرمینگ از زمان جنگ جهانی دوم مرسوم بوده است. اولین قطعات هیدروفرم شده در سالهای 1940 و 1950 تولید شدند. از سال 1990 هیدروفرمینگ به عنوان یک فرایند قابل قبول در صنایع خودروسازی مطرح و مورد استفاده قرار گرفته است. پس از آن، فعالیتهای پژوهشی در این زمینه متمرکز شده و مراکز تحقیقاتی مرتبط همکاری خود را با شرکتهای سازنده
خودرو و اتصالات فلزی گسترش دادهاند ]6[.
2-1- معرفی روشهای اصلی هیدروفرمینگ ورق
در زمینه فرایند هیدروفرمینگ ورق تحقیقات زیادی در طی سالهای اخیر انجام شده و روش های متعددی از سوی محققان ارائه گردیده است. برخی از این روشها به عنوان پایه سایر روشها محسوب میشوند. در این فصل، روش های اصلی فرایند هیدروفرمینگ مورد بررسی قرار میگیرد.
1-2-1- روشهای ماتریس – سیال
در روشهای هیدروفرمینگ ماتریس – سیال، سنبه بصورت صلب است و سیال درون محفظه نقش ماتریس را بر عهده دارد. این روش دارای انواع مختلفی است كه در زیر شرح داده میشوند.
1-1-2-1- هیدروفرمینگ استاندارد (هیدروفرمینگ با دیافراگم لاستیکی)
روش هیدروفرمینگ استاندارد توسط سیرووارودچلوان و تراویس]5[، کندیل]7[ و ژنگ و همكاران (]6[،]8[و ]9[) مورد مطالعه قرار گرفت كه تصویر کلی آن در شکل (1-3) نشان داده شده است. قطعات اصلی این روش شامل سنبه، ورقگیر، محفظه فشار و دیافراگم لاستیکی میباشد. در روش هیدروفرمینگ استاندارد، قالب به یک محفظه فشار تبدیل میشود و فشار سیال از طریق دیافراگم لاستیکی واقع در بین ورق و سیال، به ورق منتقل میشود. در این روش ابتدا ورق بر روی دیافراگم قرار میگیرد و سپس ورقگیر بر روی ورق قرار داده میشود. فشار شکلدهی با پایین رفتن سنبه ایجاد میگردد. همچنین نیروی ورقگیر در قسمت فلنج قطعه با اعمال فشار روغن و از طریق دیافراگم لاستیکی به ورق اعمال میشود. این روش دارای مزایای زیادی است که از آن جمله میتوان به کیفیت سطح بهتر، شکلدهی قطعات پیچیده و عدم چروكیدگی در ناحیه فلنج قطعه كار اشاره کرد]8[.
همانگونه که از شکل (1-3) پیداست، یکی از اجزای اصلی روش هیدروفرمینگ استاندارد، یک دیافراگم لاستیکی است که برای آببندی محفظه، مورد استفاده قرار میگیرد. به علت تماس مستقیم ورق با دیافراگم و در نتیجه، ایجاد تغییر شکل زیاد در دیافراگم، خرابی زودرس در آن رخ میدهد. بعلاوه، تعویض دیافراگم وقتگیر و هزینهبر بوده و موجب افزایش نیروی شکلدهی خواهد شد. همچنین کنترل چروک در این فرایند مشکل میباشد]8[. از این رو، کاربرد روش هیدروفرمینگ استاندارد در صنعت با مشکلاتی همراه بوده که چندان با استقبال صنعتگران مواجه نگردیده است.
2-1-2-1- کشش عمیق هیدرومکانیکی -هیدرواستاتیکی
به منظور کاهش محدودیتهای روش هیدروفرمینگ استاندارد، از سوی تعدادی از محققان روش کشش عمیق هیدرومکانیکی بر اساس روش هیدروفرمینگ استاندارد ارائه شد که در شکل (1-4) شماتیک این روش نشان داده شده است. همانطور که از شکل پیداست، در این روش، دیافراگم لاستیکی حذف شده و برای آببندی محفظه روغن از اورینگ بین ورقگیر و ماتریس استفاده شده است. فشار سیال با حرکت سنبه به داخل محفظه بوجود میآید. همچنین، از یک واحد فشارساز نیز میتوان برای ایجاد فشار استفاده کرد. در این روش به فشار بالای سیال نیاز است. بعلاوه، سیستم ورقگیر در آن مشابه حالت كشش عمیق سنتی میباشد که تنظیم نیروی ورقگیر در آن بسیار مشکل است ]6[. با بهره گرفتن از این روش، نسبت کشش برای یک فنجان استوانهای در مقایسه با روش سنتی کشش عمیق از 8/1 به 7/2 افزایش یافت]8[.
3-1-2-1- روش كشش عمیق هیدرومکانیکی- هیدرودینامیكی
شماتیک روش کشش عمیق هیدرودینامیکی در شكل (1-5) نشان داده شده است. در این روش، در ناحیه بین ماتریس و ورقگیر از هیچ آببندی استفاده نمیشود و روغن میتواند از این ناحیه خارج شود. بعلاوه، ورق در این ناحیه آزاد است. این امر موجب جریان آسان ورق میگردد. نسبت كشش در این روش نسبت به روش هیدرومکانیکی- هیدرواستاتیکی بیشتر، اما احتمال چروكیدگی نیز در ناحیه فلنج بیشتر میباشد (]9[ و ]10[).
4-1-2-1- کشش عمیق هیدرودینامیکی با فشار شعاعی
روش کشش عمیق هیدرودینامیکی با فشار شعاعی بطور شماتیک در شكل (1-6) نشان داده شده است. این روش از توسعه روش کشش عمیق هیدرودینامیکی حاصل شده است. به بیان دیگر، این روش شبیه کشش عمیق هیدرودینامیکی است، با این تفاوت که فاصله بین ورقگیر و ماتریس (g در شکل) بسیار کوچک است. این تفاوت باعث ایجاد فشار شعاعی روی لبه ورق میشود. از این رو، این روش، هیدرودینامیکی با فشار شعاعی نامیده شد. فشار شعاعی باعث راحتتر جاری شدن ورق به داخل ماتریس و افزایش نسبت کشش میشود. همچنین، شکلهای پیچیدهتری را نسبت به روش هیدرودینامیکی میتوان شکل داد. در این مجموعه قالب، وقتی سنبه به سمت پایین حرکت میکند، سیال در داخل محفظه تحت فشار قرار میگیرد. این فشار باعث شکل گرفتن ورق بر روی سنبه میشود. در این روش، ورق در داخل یک محفظه (به ارتفاع G در شکل) قرار میگیرد. ارتفاع این قسمت از ضخامت ورق بیشتر است. در نتیجه، ورق بین ورقگیر و ماتریس آزاد است. بدین ترتیب، شکل دادن ورق در این مجموعه قالب در مقایسه با کشش عمیق هیدرودینامیکی معمولی نیاز به نیروی کمتر پرس دارد و نیز نسبت کشش به مقدار قابل ملاحظهای افزایش مییابد]10[.
5-1-2-1- کشش عمیق هیدرودینامیکی با فشار یکنواخت روی ورق
روش کشش عمیق هیدرودینامیکی با فشار یکنواخت بطور شماتیک در شكل (1-7) نشان داده شده است. این روش بهبود یافته روش کشش عمیق هیدرودینامیکی با فشار شعاعی است، با این تفاوت که در فاصله بین ورقگیر و ماتریس از یک اورینگ برای آببندی استفاده شده است. به دلیل آببندی مجموعه قالب، میتوان با اعمال فشار اولیه بالا در ورق حالت پیش- بشکهای[1] ایجاد کرد. استفاده از رینگ آببندی در این مجموعه قالب باعث میشود که کنترل فشار در قالب راحتتر و دقیقتر باشد. همچنین فشار در قسمت فلنج و رینگ با فشار محفظه یکسان است. این موضوع باعث افزایش زیاد در نسبت کشش میشود]11[.
6-1-2-1- کشش عمیق هیدروریم
همانطور که در بالا بیان شد، اعمال فشار شعاعی سیال بر روی لبه ورق باعث حرکت راحتتر ورق به داخل حفره میشود. بر این اساس، روش کشش عمیق هیدروریم ارائه شد. تصویر شماتیک یک نمونه از این روش در شکل (1-8) نشان داده شده است. در این روش، ورق علاوه بر سطوح بالایی و پایینی، از طرف لبه نیز در تماس با سیال میباشد و با ورقگیر و قالب تماس ندارد. بر این اساس نسبت کشش افزایش یافته است، اما احتمال ایجاد چروکیدگی در ورق نسبت به روش کشش عمیق هیدرودینامیکی بیشتر میباشد، زیرا ورق در هر دو سمت بالا و پایین آزاد است. همچنین به علت خارج شدن روغن، افت شدیدی در فشار روغن به وجود میآید که برای جبران آن باید فشار را افزایش داد. بر اساس نتایج گزارش شده، نسبت کشش در این روش نسبت به روش کشش عمیق هیدرومکانیکی برای کشش یک فنجان استوانهای از 6/2 به 2/3 افزایش یافت (]5[و]8[).
[1] -Pre-bulge
(در فایل دانلودی نام نویسنده موجود است)
تکه هایی از متن پایان نامه به عنوان نمونه :
(ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است)
تعریف مسأله، فرضیه ها و اهداف:
یکی از بالاترین خسارات ناشی از حوادث غیر مترقبه، پدیده فرسایش سواحل می باشد. یكی از وظایف دولتها كاهش اثرات بلایای طبیعی بوده است . همین امر به روشنی لزوم یافتن راه حل اصولی برای كنترل و پیشگیری وكاهش خسارت ناشی از آنها را به اثبات می رساند.
مکانیزم رودخانهها به گونه ای است که مقطع یک رودخانه به مرور زمان دچار تغییرات شدید میگردد. این تغییرات بویژه در قوس رودخانهها مشهودتر است. فرایندهای فرسایش ساحل به طور مستقیم به مهاجرت جانبی آبراهه های آبرفتی مربوط می شود. اندركنش نیروهای فعال حاصل از جریان آب و نیروهای مقاوم به جریان ناشی از مواد بستر باعث فرسایش ساحل می شود.
در قوس رودخانه، نیروهای هیدرودینامیكی جریانهای ثانوی را بوجود میآورند كه خطوط جریان سطحی را به سمت ساحل بیرونی و خطوط جریان نزدیک به بستر را به سمت ساحل داخلی منحرف میسازند. در مقطع جریان درامتداد قائم، خطوط جریان مجاور ساحل بیرونی بطرف پایین و خطوط جریان پشته متمركز داخلی به طرف بالا هستند در نتیجه پایداری ذره در نزدیكی ساحل خارجی بهم میخورد و بستر رودخانه گود می شود و از طرف دیگر در مجاورت پشته متمركز داخلی به پایداری ذره اضلافه می شود و تراز بستر افزایش پدا میكند. آبشستگی در پنجه ساحل خارجی، خطالقعر را به سمت ساحل بیرونی قوس جابجا میكند و شیب ساحل را افزایش میدهد كه در نهایت به شكست ساحل منتهی می شود.
با توجه به مطالب بیان شده در خصوص هیدرولیک جریان در خم رودخانهها، قوس خارجی همواره تحت تاثیر بردارهای شدید سرعت بوده و دچار فرسایش میگردد و در قوس داخلی رسوبگذاری ایجاد میگردد همچنین از آنجا که تخریب ساحل در قوس خارجی می تواند ضررهای زیادی را به همراه داشته باشد، حفاظت از این قسمت از ساحل بخش مهمی از مهندسی رودخانه را تشکیل میدهد. جهت محافظت ساحل در قوس بیرونی روش های متعددی وجود دارد که از آن جمله میتوان به موارد زیر اشاره نمود:
1- حفاظت ساحل بوسیله احداث آبشکن
2- حفاظت ساحل بوسیله احداث Bendway
3-حفاظت ساحل بوسیله احداث دایک
4- حفاظت ساحل بوسیله پوشش گیاهی
5- حفاظت ساحل بوسیله پوشش سنگ چین (Riprap)
6- حفاظت ساحل بوسیله پوشش خاک و سیمان
7- حفاظت ساحل بوسیله پوشش توری سنگ ها و روکش ها
8- حفاظت ساحل بوسیله پوشش با کیسه های مخصوص مخلوط سیمان و خاک
9- حفاظت ساحل با بهره گرفتن از مصنوعات ژئوسنتتیک
10- حفاظت ساحل بوسیله اجرای دیوار حائل
استفاده از آبشکن یا اپی از جمله بهترین و اقتصادیترین روش جهت محافظت سواحل در اغلب شرایط بوده و در اکثر نقاط دنیا مورد استفاده قرار می گیرد.
« Bankheed ،Groin ،Groyne» کلمه ای فرانسوی است. معادل آن در زبان انگلیسی «Epi» است.
كه در زیان فارسی آب شکن ترجمه شده است. نقش آن این است که جریان آب کناره رودخانه را به طرف وسط رودخانه هدایت میکند و سرعت آب درکناره ها را کاهش میدهد و نیز قسمتی از آب رودخانه را بین اپیها به حالت سکون باقی میگذارد. در نتیجه، مواد محموله آب ته نشین می شود و رودخانه حالت پس رفتگی پیدا می کند و کناره بتدریج تثبیت می شود.
انواع آبشکن:
آبشکنها از نظر نوع استفاده به موارد زیر تقسیم میشوند:
الف: آبشکنهای طویل غیر مستغرق )قابل استفاده در آبخیزداری(
ب: آبشکنهای کوتاه غیر مستغرق )قابل استفاده در آبخیزداری(
ج: آبشکنهای طویل مستغرق (قابل استفاده در کشتیرانی)
د: آبشکنهای کوتاه مستغرق (قابل استفاده در کشتیرانی(
الگوی جریان برای دو آبشکن مستغرق و غیر مستغرق در شکل (2) ارائه شده است.
آبشکنها، نسبت به زاویه استقرار با جهت جریان آب، نیز به شرح زیر تقسیم بندی میشوند:
1- آبشکنهای برگردان یا منحرف کننده: نسبت به جریان آب بین 10 تا 15 درجه درجهت جریان آب ) به سمت پایاب)
2- آبشکن های بازدارنده: نسبت به مسیر جریان آب بین 10 تا 15 درجه در جهت عکس جریان آب ) به سمت سراب(
3- آبشکن های عمودی :زاویه معادل 90 درجه نسبت به مسیر جریان آب به سمت محور رودخانه.
در شكل (3) وضعیت قرار گرفتن آبشكن نسبت به راستای جریان نشان داده شده است.
آبشكنهای جذبی كه در آن محور آبشكن به سمت پائین تمایل دارد و این امر موجب میگردد تا جریان آب به میدان آبشكن متمایل گردد. بعلاوه در این نوع آبشكن ساحل مقابل از انحراف جریان حاصله از سازه متأثر نمیگردد.
آبشكنهای دفعی كه در آن محور آبشكن به سمت بالا تمایل دارد. در این حالت غالباً جریان آب از محدوده آبشكن به سمت ساحل مقابل رانده شده و آنرا تحت تأثیر قرار میدهد.
آبشكنهای برگردان كه در آن فقط مسیر جریان بصورت محدود از اطراف سازه منحرف میگردد.
آبشکنها بر اساس نفوذپذیری به سه دسته زیر تقسیم بندی میشوند :
1- آبشکنهای تاخیری
2- آبشکنهای تاخیری- منحرف کننده
3- آبشکنهای منحرف کننده
از نظر ساختاری سازه آبشكن عموماً از پنج جزء مشخص شامل دماغه، بازو، ریشه، پیشبند و روكش تشكیل شده است. در شكل (5) اجزای پنجگانه مزبور نشان داده شده است.
مشخصات عمومی آبشكنها:
عملكرد آبشكنها از نظر فرسایش و رسوبگذاری عموماً تابعی از فاصله، طول، راستا و شكل آنها میباشد. چنانچه فاصله آبشكنها بیش از حد لازم انتخاب شد این احتمال وجود دارد كه جریان رودخانه وارد میدان آبشكن گردیده و موجبات فرسایش كنارهها را فراهم آورد. بعلاوه این امر ایمنی آبشكن پایین دست را نیز به مخاطره میاندازد و مانع تشكیل لایه رسوبی یكپارچه در فضای بین آبشكنها میشود. شكل (6) وضعیت جریان را در محدوده آبشكن در حالتی كه فاصله سازهها بیش از حد متعارف است نشان میدهد.
طبق بررسیهای انجام شده برای عملكرد مطلوب آبشكنها (تشكیل لایه رسوبی و پایدارسازی كنارهها و برقراری جریان منظم در رودخانه) بهتر است رابطه ذیل رعایت شود.
در این رابطه L فاصله آبشكنها (بر حسب متر)، C ضریب شزی و h عمق جریان (بر حسب متر) در رودخانه، ضریب اصلاحی و g شتاب ثقل میباشد، برقراری رابطه فوق موجب میگردد تا مطابق شكل (7) یک گرداب منفرد و فراگیر در میدان آبشكن تشكیل گردد. وقوع این حالت ترسیب یكنواختتر مواد رسوبی در میدان آبشكن و عملكرد مطلوب آن را به دنبال دارد.
علاوه بر فاصله، طول آبشكنها نیز در عملكرد رفتاری آنها از نظر فرسایش و رسوبگذاری موثر است. براساس تحقیقات انجام شده در آزمایشگاه هیدرولیک دلفت هلند نسبت مناسب تشخیص داده شده است، و از این رو انتخاب آبشكنهای كوتاه چندان مطلوب نمیباشد چه باعث افزایش نسبت مزبور میگردد. ممك و ولوسنی همچنین رابطه كلی ذیل را در انتخاب L و b پیشنهاد كردهاند :
در این رابطه B عرض كنترل شده رودخانه (شكل 7) و L و b به ترتیب فاصله و طول آبشكنها میباشد. همانطوریكه از رابطه (2) بر میآید در انتخاب طول و فاصله آبشكنها بعضی از محققین توجه به عرض رودخانه (B) را نیز توصیه نمودهاند. در جدول (1) نسبتهای پیشنهادی برای و توسط بعضی از منابع درج گردیده است.
راستای آبشكنها نسبت به مسیر جریان نیز تأثیر عمدهای در عملكرد آنها از نظر جابجایی و انتقال مواد رسوبی دارد. براساس تحقیقات انجام شده توسط آكانتیس و همكاران آبشكنهایی كه رو به پایین ساخته میشوند (آبشكنهای جذبی) از نظر میزان رسوبگذاری در میدان آبشكن ومسئله فرسایش در محدوده سازه از عملكرد خوبی برخوردارند. در جدول (2) زاویه انحراف آبشكنها نسبت به امتداد جریان براساس نظریه كارشناسان مختلف ارائه شده است. در این جدول مطابق شكل (8) علامت معرف زاویه انحراف آبشكن است.
براساس بررسیهای انجام گرفته آبشكنهای دفعی موجب تشدید فرسایش در دماغه و ایجاد چاله فرسایشی عمیقتری میشوند. از آنجائیكه یكی از اهداف احداث آبشكن برقراری شرایط لازم برای ترسیب مواد رسوبی درمیدان آبشكن میباشد. لذا در طراحی آبشكنها این مسئله مورد توجه قرار میگیرد. آبشكنهای دفعی در مقایسه با آبشكنهای قائم موجب افزایش رسوبگذاری(بخصوص در جناح پایین دست) میدان آبشكن میگردد. در این نوع آبشكنها با تشكیل یک گرداب فعال (هسته چرخشی) مواد معلق موجود در آب در میدان آبشكن (و بویژه در محدوده بالادست) آبشكن) ترسیب می کند (چگونگی رسوبگذاری در محدوده آبشكنهای دفعی و جذبی در شكل (9) نشان داده شده است). آبشكنهای جذبی برای حفاظت سواحل فرسایشی رودخانه چندان مناسب نمیباشند. در این نوع آبشكنها جریان فعال نفوذی به میدان آبشكن اغلب موجب تخریب و فرسایش كنارهها گردیده و به نوبه خود سلامت سازه آبشكن را نیز به مخاطره میاندازد. آبشكنهای قائم نیز محدوده حفاظتی كمتری را پوشش میدهند. از اینرو آبشكنهای دفعی در مقایسه با سایر انواع آبشكنها برای حفاظت كنارهها از خطر فرسایش و همچنین تحقق اهداف رسوبگذاری و تشكیل لایه رسوبی ضخیم در فضای بین سازهای مناسب میباشند.در زمینه آبشستگی پای آبشکن تحقیقات زیادی صورت گرفته و روابطی را جهت تعیین حداکثر عمق آبشستگی در پای آبشکن ارائه کرده اند ولی همچنان به عنوان یکی از مسائل مورد توجه مهندسی رودخانه به حساب میآید.
یکی از نواقص اکثر این تحقیقات استفاده از فلوم مستقیم در آزمایشگاه بوده است. همانطور که بیان گردید از آبشکنها جهت حفاظت سواحل در خم رودخانهها استفاده می شود و با توجه به ماهیت پیچیده جریان در خم رودخانه نمیتوان اطلاعات مربوط به کانالهای مستقیم را برای رودخانههای طبیعی بکار برد. بدلیل تشابه مکانیزم آبشکن و پایه پل، الگوی جریان و آبشستگی در اطراف این دو سازه شباهت زیادی به یکدیگر دارند.
:
نیاز مبرم بشر به طراحی وساخت بناهای1- باقابلیت اجرای سریع 2- مقاوم در برابر نیروهای جانبی مانند زلزله 3- سبک در سازه و جنس و متریال اجرایی 4- توان تحمل کشش بالا وضریب رفتار ایمن 5- کاربری سازه مسکونی با طبقات متعدد ما رابه تحقیق درباره این موضوع انداخت. در ساختمانهای رایج سازه علی رغم طراحی پیشرفته معمولا ازاجرای ضعیفی در ایران برخوردار است به این معنی که رفتار واقعی سازه در مواقع سرویس دهی با آنچه طراحی شده کاملا متفاوت است. لذا نظارت دقیق بر کیفیت اجرا و تطبیق با جزییات محاسبه شده امری کاملا ضروری می باشد. از این رو ساختمانهای پیش ساخته شده در کارخانه به دلیل طی نمودن مراحل کنترل کیفیت و تولید مطابق با نقشه های محاسباتی رفتار مناسب در موقع سرویس دهی خواهد داشت. در این بین قابهای سبک فولادی ال اس اف با کیفیت ساخت کارخانه ای واتصالات ساده، مطمئن مستحکم و سریع از اهمیت ویژه ای برخوردار می باشندهمچنین نیاز روز افزون کشور به سطح زیربنای بیشتر در امر مسکن، آموزش، تسهیلات بهداشتی، درمانی، رفاهی، تاسیسات صنعتی و تجاری که عمدتا از افزایش جمعیت و توسعه ناشی میشود، ایجاب مینماید که از روشهای جدیدی در ساختمان سازی استفاده گردد. دراین روشها علاوه بر کاهش زمان ساخت، با صرفه جویی در مصرف مصالح ساختمانی سنتی، هزینه ساخت نیز با حفظ کیفیت مطلوب کاهش می یابد به منظور دستیابی به اهداف فوق سیستم ساختمانی ساخت سریع با بررسی های فنی و اقتصادی جامعی که در آن امکانات و شرایط موجود در نقاط مختلف کشور منظور گردیده است طراحی شده و به عنوان سیستم ساختمانی سریع معرفی می گردد. (حاتمی و رحمانی، 1389؛ فلاح و وطنی اسکوئی، 1382).
دیوار های برشی یکی از اعضای اصلی ومقاوم در برابر بارهای جانبی مخصوصاً زلزله اند که به طور وسیع در ساختمان های کوتاه مرتبه و میان مرتبه فلزی مورد استفاده قرار می گبرد هر پانل دیوار برشی می تواند از یک قاب فولادی با مقطع فولادی سرد باشد که تیرکها و ستونکهای قاب به وسیله پیچ خودکار یا پرچ متصل است. استفاده از قاب های ترکیبی با بتن سبک و فولادی سبک سرد نورد شده جهت بالا بردن میزان مقاومت جانبی در برابر برش اهمیت بسزایی در پایایی سازه و افزایش تعداد طبقات می تواند داشته باشد که در این پایان نامه به آن می پردازیم (AISI.)[1].
1-1- تاریخچه
1-1-1تاریخچه و دلایل به کارگیری سیستم های(LSF)
فولاد فرم داده شده در حالت سرد یاCFS از سال 1850در کشور انگلستان و آمریکا با به کارگیری در ساخت لوازم اتومبیل آغاز شد ولی تا قبل از جنگ جهانی اول در ساختمان سازی بکار گرفته نمی شد از سال 1930 به بعد با بکارگیری قطعات فولادیLSF درساختمان های تجاری و صنعتی شروع شد اما به دلیل ارزانی چوب نتوانست باآن به عنوان سیستم رایج مسکن سازی رقابت اقتصادی کند. از سال 1990گران شدن چوب ومطرح شدن مشکلات زیست محیطی در صنعت ساختمان سازی سبب گردید که سیستم ساختمانی LSF که بااستفاده از قطعات فولاد CFS از نوع گالوانیزه برپا می گردد،برای ساخت واحد های مسکونی بکار گرفته شود.این سیستم ساختمانی تا به حال توانسته در کشور های مختلفی گواهنامه ساخت در چند طبقه دریافت نماید و من جمله در ایران فعالیت های گسترده ای در این حوزه مخصوصاً درشهر پرند و تیران انجام پذیرفته است (وثوقی فر و عدل پرور، 1386؛ حاتمی و همکاران ،1388).
بکار گیری سیتم ساختمانی LSF برای ساخت وساز مسکن بعد از جنگ جهانی دوم در استرالیا هم آغاز شد. در صورتی که پیش از آن ساخت وسازمسکن عمدتاً با بهره گرفتن از قاب چوبی انجام می شد. در ادامه تحولات ساختمانی در آمریکا در این کشور نیز تحولاتی صورت گرفت که عمده ان به کارگیری این سیستم در کشور استرالیا بود. این سیستم به دلیل سرعت بالا و مقاوم توانست رشد قابل توجهی در صنعت سازه کشور استرالیا داشته باشد. و هم اکنون بهترین ماشین الات رول فرم دنیا در انحصار آن کشور قرار دارد. در کشور سوئد چوب رایجترین مصالح ساختمانی بود اما به دلیل کاهش متوسط عمر درختان از دهه 90سازندگان ساختمان اقدام به جایگزین کردن سیستم LSF درآن کشور کردند. در حال حاضر در کشور هلند نیز سیتم LSF در ساخت سازه های مسکونی ومدارس نقش عمده ای دارد. در سال 1989بنیاد تحقیقات ساختمان هلندSBR، پتانسیل استفاده از سیستم LSF را برای خانه سازی مورد بررسی قرار داد ونتیجه بررسی ها مشخص نمود که به کارگیری این سیستم ساختمانی، تسهیل در طراحی وفوائد زیست محیطی را به دنبال دارد ولی کمی گرانتر از سازه های چوبی است. در کشور فرانسه هم در سال های اخیر سبک این سیستم به شکلی محدود به جای سیستم های فولادی و بتونی قرار گرفته است.در کشور کره، آجر وبتن تا سال 1996 به عنوان مصالح اصلی در ساخت و ساز بودند و در ساختمان های بلند مرتبه از سیستم های بتن درجا استفاده می شد تا در فوریه سال 1996شرکت POSCOبرای اولین بار از سیستم LSF را در شهر فوانگ با احداث700 ویلای دو تا پنج طبقه شروع نمود.
در سال1995داویس و همکاران استفاده از فولاد جدار نازک را در ساختمانهای مدولار کوتاه و متوسط بررسی کرده اند در سال 1996 سرته و همکاران عملکرد دینامیکی دیوارهای برشی را در قابهای سبک فولادی مورد بررسی قرار داده است. درهمان سال داویس و همکاران رفتار برشی اتصالات فشرده را در سازه های با قاب سبک فولادی بررسی کرده اند. در سال 1997درایور و همکاران رفتار لرزه ای را در دیوارهای برشی فولادی مورد بررسی قرار داده اند. در سال1998پی وکینی مقاومت برشی را در اتصالات فشرده فولادی مورد
بررسی قرارداده اند. در همان سال لنون و همکاران به مقایسه تعدادی از اتصالات مکانیکی در فولاد سرد نورد پرداخته اند. در همان سال الگالی و همکاران به تحلیل رفتار دیوارهای برشی فولادی نازک پرداخته اند. در سال 1999 لاوسون ساخت مدولار را با بهره گرفتن از قاب سبک فولادی بررسی کرده است. در سال 2000 لوبل و همکاران عملکرد دیوارهای برشی سخت نشده را تحت بارگذاری متناوب بررسی کرده اند. در سال 2004دوبینا به بررسی عملکرد پانلهای برشی دیوارهای استادی سرد نورد تحت بارگذاری یکنواخت و متناوب پرداخته است. در همان سال تیان و همکاران به بررسی مقاومت گسیختگی وسختی قابهای دیوارهای فولادی سرد نورد پرداخته اند. درسال2005 پاستور و رودریگز به مدل سازی پسماند دیوارهای برشی بامهاربندی ضربدری شکل در دیوارهای نازک سازه ها پرداخته اند. درهمان سال الخراط و راجرز مدل آزمایشگاهی قاب فولادی سبک که بوسیله دیوارهای مهاربندی تقویت شده اند پرداخته اند. در سال 2006 ولکوویچ و یوهانسون مدل طراحی سنتی در دیوارهای با صفحات گچی تک لایه و منبسط شونده با دولایه که در مقابل آتش مقاوم می باشند را بررسی نموده اند. در همان سال گور گلوسکی یک روش ساده را برای محاسبه شاخص یو – والوودر قابهای سبک ارائه نموده است. این روش جدید براساس تحقیقات انجام شده بوسیله بازگشت به اصول اولیه دراستفاده از مدلسازی آلمان محدود در تحلیل سیالهای حرارتی در میان ساخت قاب سبک می باشد. در همان سال کاسافنت و همکاران آزمایشات آزمایشگاهی گره ها را در طراحی لرزه ای سازه های سبک پرداخته اند. در همان سال بلاژبه بررسی آزمایشگاهی وتحلیلی پانل دیوارهای برشی 9 میلی متری قاب فولادی سبک پرداخته اند. در همان سال دبینا و همکاران عملکرد لرزه ای خانه های با قاب سبک فولادی بررسی کرده اند. در همان سال لاندولفو و همکاران به مطالعه آزمایشگاهی و نظری عملکرد لرزه ای قابهای سبک فولادی نورد سرد در ساختمانهای کوتاه پرداخته اند. در همان سال رکاس پانل دیوارهای برشی فولادی سبک را مورد آزمایش قرار داده است. در سال 2007 فیورینو و همکاران آزمایشاتی را برروی اتصالات پیچ شده میان پانلهای برپایه گچ یا چوب و پروفیلهای استد در خانه سازی با قاب سبک فولادی انجام داده است. در همان سال هانگ و همکاران به بررسی آزمایشهای متناوب اتصالات پیچی قاب خمشی فولادی ویژه سازه های نورد سرد شده پرداخته اند. در این نمونه ها پاسخ سه مود گسیختگی – گسیختگی اتصالات، کمانش بال و کمانش ستون مورد بررسی قرار گرفته است. در همان سال لاندولفو و همکاران پاسخ لرزه ای قاب های فولادی نورد سرد را در ساختمانهای کوتاه مورد بررسی قرار داده اند. درسال 2008 رونق و مقیمی به بررسی مدهای گسیختگی سیستم های مختلف و ضرایب موثر محاسباتی در پاسخ شکل پذیری دیوارهای CFS پرداخته اند.
در ساختمانهای رایج سازه علی رغم طراحی پیشرفته معمولا از اجرای ضعیفی در ایران برخوردار است به این معنی که رفتار واقعی سازه در مواقع سرویس دهی با آنچه طراحی شده کاملا متفاوت است. لذا نظارت دقیق بر کیفیت اجرا و تطبیق با جزییات محاسبه شده امری کاملا ضروری می باشد. از این رو ساختمانهای پیش ساخته شده در کارخانه به دلیل طی نمودن مراحل کنترل کیفیت و تولید مطابق با نقشه های محاسباتی رفتار مناسب در موقع سرویس دهی خواهد داشت. در این بین قابهای سبک فولادی ال اس اف با کیفیت ساخت کارخانه ای واتصالات ساده، مطمئن مستحکم و سریع از اهمیت ویژه ای برخوردار می باشند.
همچنین نیاز روز افزون کشور به سطح زیربنای بیشتر در امر مسکن، آموزش، تسهیلات بهداشتی، درمانی، رفاهی، تاسیسات صنعتی و تجاری که عمدتا از افزایش جمعیت و توسعه ناشی میشود، ایجاب مینماید که از روشهای جدیدی در ساختمان سازی استفاده گردد. دراین روشها علاوه بر کاهش زمان ساخت، با صرفه جویی در مصرف مصالح ساختمانی سنتی، هزینه ساخت نیز با حفظ کیفیت مطلوب کاهش می یابد به منظور دستیابی به اهداف فوق سیستم ساختمانی ساخت سریع با بررسی های فنی و اقتصادی جامعی که در آن امکانات و شرایط موجود در نقاط مختلف کشور منظور گردیده است طراحی شده و به عنوان سیستم ساختمانی سریع معرفی می گردد (آرش مستاجران وهمکاران، 1388؛ انوشه آشوری، 1385؛ مركز تحقیقات ساختمان و مسكن).
1-1-2- تاریخچه و دلایل به کارگیری بتن های سبک
اولین گزارشهای تاریخی در مورد کاربرد بتن سبک و مصالح سبک وزن به روم باستان بر می گردد. رومیان در احداث معبد پانتئون و ورزشگاه کلوزیوم از پومیس که نوعی مصالح سبک است استفاده کرده اند. کاربرد بتن سبکدانه پس از تولید سبکدانه های مصنوعی و فراوری شده در اوایل قرن بیستم وارد مرحله جدیدی شد. در سال 1918، S. J. Hayde با بهره گرفتن از کوره دوار اقدام به منبسط کردن رس و شیل کرد و بدین وسلیه سبکدانه ای مصنوعی تولید کرد که از آنها در ساخت بتن استفاده شد. تولید تجاری روباره های منبسط شده نیز از سال 1928 آغاز گردید. این سبکدانه مصنوعی در هنگام جنگ جهانی اول به دلیل محدودیت دسترسی به ورق فولادی برای ساخت کشتی بکار رفت. کشتی Atlantus به وزن 3000 تن که با بتن سبک هایدیتی ساخته شد، در اواخر سال 1918 به آب افتاد. در سال 1919 کشتی Selma به وزن 7500 تن و طول 132 متر با همین نوع بتن ساخته و به آب انداخته شد. تا آخر جنگ جهانی اول و سپس تا سال 1922 کشتی ها و مخازن شناور متعددی ساخته شد که یکی از آن ها Peralta تا سال های اخیر شناور بود. برنامه ساخت کشتی ها در اواسط جنگ جهانی دوم متوقف شد و دوباره به دلیل محدودیت تولید ورق فولادی مورد توجه قرار گرفت. تا پایان جنگ جهانی دوم 24 کشتی اقیانوس پیما و 80 بارج دریایی ساخته شد که ساخت آن ها در دوران صلح، اقتصادی محسوب نمی گشت. ظرفیت این کشتی ها 3 تا 147000 تن بود. در سال 1948 اولین ساختمان با بهره گرفتن از شیل منبسط شده در پنسیلوانیای شرقی احداث گردید. در ادامه، از سال 1950 ساخت بتن سبک گازی اتوکلاو شده در انگلستان متداول شد. اولین ساختمان بتن سبکدانه مسلح در این کشور که یک ساختمان سه طبقه بود درسال 1958 و در شهر برنت فورد احداث گردید.
ساختمان هتل پارک پلازا در سنت لوئیز، ساختمان 14 طبقه اداره تلفن بل جنوب غربی در کانزاس سیتی در سال 1929 از جمله ساختمان های دهه 20 و 30 میلادی ساخته شده در آمریکای شمالی با بهره گرفتن از بتن سبک هستند. ساختمان 42 طبقه در شیکاگو، ترمینال TWA در فرودگاه نیویورک در سال 1960، فرودگاه Dulles در واشنگتن در سال 1962، کلیسایی در نروژ در سال 1965، پلی در وایسبادن آلمان در سال 1966 و پل آب بر در روتردام هلند در سال 68 از جمله ساختمان هایی هستند که با بتن سبکدانه ساخته شده اند. در هلند، انگلستان، ایتالیا و اسکاتلند نیز در دهه 70 و 80 پل هایی با دهانه های مختلف ساخته و با موفقیت بهره برداری شده اند. در سال های 1970 ساخت بتن سبکدانه پرمقاومت آغاز شد و در دهه 80 به دلیل نیاز برخی شرکت های نفتی در امریکا و نروژ برای ساخت سازه ها و مخازن ساحلی و فراساحلی مانند سکوهای نفتی یک رشته تحقیقات وسیع برای ساخت بتن سبکدانه پرمقاومت در این دو کشور با هدایت واحد آغاز شد که نتایج آن در اواخر دهه 80 و اوایل دهه 90 منتشر گشت. در سالیان اخیر نیز استفاده بتن سبک در دال سقف ساختمانهای بلند مرتبه، عرشه پلها و دیگر موارد مشابه و همچنین کاربردهای خاص مانند عرشه و پایه دکلهای استخراج نفت کاربرد فراوانی یافته است.
دانستن این موضوع كه بتن سبك از 50 سال پیش تا به حال در اروپا در ساختن بنا كاربرد دارد اما هنوز در ایران ناشناخته است تعجبی همراه با افسوس را به همراه دارد. كشور ما درحالی از قافله صنایع مدرن ساختمان سازی عقب مانده كه زلزله های مخربی را در 15 سال گذشته تجربه كرده است (لازم به ذکر است با توجه به صحبت ها وفعالیت های شکل گرفته در عرصه صنعت سازه ومسئولان مربوطه سازمان مسکن ایران بتن های سبک در دستور کار ساخت وتولید قرار دارند{منبع خبرگداری مهر ذکر شود}).
نگارش یافته توسط رفعتی
اغلب بتنهای سبک خواصی از قبیل عایق بودن نسبت به حرارت و صوت، مقاومت در برابر یخ زدگی و آتش سوزی و کاهش لطمات ناشی از زلزله را دارا می باشند. سبك و یكپارچه سازى را می توان راهكارى محورى و عملى براى افزایش ایستادگى و ایمنى بناها در برابر زلزله محسوب داشت. ویژگى هایى چون كاهش جدى وزن سازه و ابعاد برخى اجزا، صرفه جویى زیاد در میزان فولاد مصرفى در اسكلت و پى، حائل صدا و رطوبت و به ویژه عایق حرارت بودن، افزایش مؤثر فضاى مفید داخل بنا، قابلیت هاى گوناگون كار پذیرى، انعطاف و تنوع در اشكال، سادگى، و سرعت و سهولت در حمل و اجرا، كاهش خستگى بنا و پایانى مناسب در برابر عوامل آسیب زا. نیز مى توانند از مزایاى بهره گیرى تجربه شده از این بتن ها با موارد كاربرى متعدد در ساخت و سازها باشند. بدیهى است تكیه بر این راهكار محورى در رویكردى منسجم و نظام یافته و با توجه به مجموعه موارد فنى، اقتصادى و اجرایى، نه تنها به معنى كم بها دادن به سایر عوامل مؤثر در ایمن و مقاوم سازى بناها و مجموعه فن آورى هاى مربوط به آن نخواهد بود بلكه ضمن جبران نسبى بسیارى كاستى ها در دیگر زمینه ها به ارتقا و افزایش كارآیى دیگر راهكارهاى مقتضى نیز می انجامد.(دهیر[1]،1998؛ مرکز عمران ایران؛ جوادپور و همکاران 1388).
بتن های سبک اغلب داراى ویژگى هاى مطلوب كار پذیرى چون قابلیتهاى برش، تراش و پذیرش میخ، پیچ، رول- پلاك و كورپى، امكان مرمت و نیز عبور تأسیسات و نصب و اجراى چارچوب ها و درب و پنجره و تزئینات و پوشش ها و رنگ هاى مقتضى و توان پذیرش پوششها و نماهاى مختلف را داراست و ضمن عدم نیاز به اندودهاى سنگین اضافى، امكان تطبیق با طرح هاى گوناگون معمارى را از جمله در سطوح و احجام منحنى در كاربرى های مختلف دارا می باشد.
Professor R K Dhir[1]2
American Iran and steel Instiuted [1]1