با پیشرفت علوم و گذر از دهه های صنعتی شدن در غرب، بشر رفته رفته متوجه زیان های وارد شده بر محیط زیست شد و با وضع قوانین سختگیرانه سعی در حفظ منابع موجود خود و جلوگیری از آلودگی محیط زیست کرد.
شیمی سبز که در اوایل دهه ی 90 معرفی شد شامل فرایند های شیمیایی و فناوری هایی است که به حفظ محیط زیست و بهبود کیفیت زندگی کمک می کند. شیمی سبز را با نام های متفاوتی مانند شیمی دوست دار محیط زیست، شیمی پاک و اقتصاد اتمی نیز می خوانند.1 عبارت شیمی سبز که توسط IUPAC پذیرفته شده، به این صورت تعریف می شود:
«اختراع، طراحی و بکارگیری فرآورده های شیمیایی و فرایند هایی که تولید و مصرف مواد خطرناک را کاهش می دهد و یا حذف می کند.»2
اصول شیمی سبز معنای تازه ای از اصطلاح «محیط زیست» را در اختیار شیمیدان ها قرار داد. دوازده اصل شیمی سبز که توسط پاﻧول آناستاس و جان وارنر نوشته شد، همه ی موارد از جمله طراحی سنتز موثرتر، استفاده از مواد کم خطرتر و بکارگیری منابع تجدیدپذیر را شامل می شود.
:
توسعه صنعت ناوبری و افزایش حجم تبادلات در بنادر کشور مستلزم فراهم آوری امکانات، تجهیزات و تکنولوژی غنی و به روز در زمینه ساخت، تعمیر و پذیرش شناورهاست. از مهمترین امکانات میتوان فضای خاص و تجهیزات مورد نیاز برای تعمیر و نوسازی کشتیها و شناورها را ذکر کرد. حوضچههای خشک[1] در محدودههای ساحلی بهنحوی که قابلیت برقراری ارتباط ایمن با بدنه آبی بهمنظور انجام عملیات آبگیری و تخلیه را داشته باشند، همراه با جراثقالهای متحرک با ظرفیت بسیار بالا از جمله این امکانات بهشمار میروند [1].
تمامی کشتیهای جنگی استراتژیک و بیشتر کشتیهای بازرگانی دارای سازههای بسیار سنگینی با وزن حدود چند صد تن میباشند. چنین کشتیهای سنگینی در بخشهای زیادی از جهان از زمان های باستان و قبل از سال 1500 میلادی وجود داشتهاند. اطلاعات بسیار اندکی در خصوص تاسیساتی که بایستی به منظور سرویس چنین کشتیهایی در دوره ساخت و آب اندازی یا تعمیر آنها در زیر خط آب وجود داشته باشد، در دسترس میباشند. در حدود سال 1500 میلادی، چهار روش برای این منظور وجود داشته است: یک کشتی میتواند کج شود، بر روی زمین قرار گیرد، به سمت ساحل کشیده شود و یا در حوضچه خشک قرار گیرد.
حوضچههای خشک، در موقعیتی که دارای جزر و مد قوی میباشد حتی در جاییکه کمترین نیاز به آن احساس میشود، آسانترین گزینه برای ساخت و بهرهبرداری میباشد [2]. حوضچه خشک بهعنوان یکی از ابنیههای به آباندازی و یا خارج نمودن کشتی که عمدتاً بهمنظور تعمیر کشتی در زمانیکه حوضچه فاقد آب باشد مورد استفاده قرار میگیرد. این حوضچهها قادر به پرشدن بهوسیله آب دریا در زمان بازبودن دیوار متحرک و تخلیه آب بوسیله پمپهای مکنده آب در زمان بهرهبرداری و انجام تعمیرات بر روی کشتی میباشند. مزیت استفاده از حوضچههای خشک در سادگی اجرا و بهرهبرداری از آنها میباشد.
حوضچههای خشک دارای سه دیواره ثابت بتنی بوده و کف آن از نوع کف بتنی وزنی یا دال خمشی میباشد که در شرایط خاص ممکن است نیاز به اجرای شمع داشته باشند [3]. این سازهها معمولا از یک طرف به دریا متصل بوده و با یک درب بزرگ از محیط دریا ایزوله میگردند. سازه درب حوضچه خشک باید توانایی آب بندی محیط داخل حوضچه را دارا بوده و در برابر فشار آب پشت درب از استحکام کافی برخوردار باشد. همچنین با توجه به ورود و خروج شناورها، امکان برداشتن و جابجا کردن آسان را داشته باشد. از اینرو استفاده از سازههای فلزی با دیوارههای تقویت شده برای درب حوضچه خشک امری رایج میباشد. سازه درب بسته به ابعاد حوضچه ونیروهای وارده از سازههای ساده با تقویتکنندههای افقی و عمودی تا سازههای دوجداره با قابلیت شناوری میتواند متغیر باشد. در ادامه این فصل، اقدام به ارزیابی مساله نموده و مروری بر سوابق مطالعات انجام شده و اهداف اصلی و حوزه مطالعاتی تعریفشده برای این پایاننامه خواهیم پرداخت. در فصل دوم نیز، با انواع حوضچههای خشک و اقسام درب فلزی آنها آشنا خواهیم شد.
1-1- ارزیابی مسأله
پانلهای ورقی تقویتشده فولادی بهصورت بسیار گستردهای بهعنوان اجزای اولیه بسیاری از سیستمهای سازهای نظیر تیرهای حمال قوسی شکل، هواپیماها، کشتیها و سازههای فراساحلی بهکار برده میشوند. سادگی ساخت و نسبت مقاومت به وزن بالای آنها، جذابیت خاصی به اینگونه ورقها داده است. تقویتکنندهها، وزن بسیار کمی در مقایسه با وزن کل سازه را دارا میباشند، در حالیکه بهمیزان قابل توجهی بر پایداری و مقاومت آن تاثیر میگذارند [4]. ورقهای تقویت شده بطور معمول شامل یک ورق با تقویتکنندههای با فواصل مساوی جوششده در یک طرف و تقویتکنندههای متقاطع میانی میباشند. معمولترین مقاطع عرضی تقویتکننده عبارت از مقاطع حبابی، تسمهای، سپری و نبشی میباشند [5].
صفحات، در حالات تقویت شده یا تقویت نشده، مهمترین المانهای سازهای در سازههای دارای دیوارههای نازک، مانند کشتیها و سازههای فراساحلی میباشند [6]. بارهای فشاری درون صفحهای تقریبا بیشترین بارهای وارده بر روی چنین المانهایی هستند. مقاومت ورقها و المانهای ورقهای تقویتی بر روی ظرفیت سازهای کلی تاثیر میگذارد [7]. در طراحی کشتیها و سازههای فراساحلی، ضروری است اطمینان حاصل کنیم که سازه دارای مقاومت کافی برای تحمل شرایط بارگذاری حدی[1] باشد. مقاومت ورقها و ورقهای تقویت شده بر روی ظرفیت سازهای کلی یا مقاومت نهایی کل سازه تاثیرگذار میباشند [6].
از سوی دیگر، کشتیها و سکوهای فراساحلی در یک محیط دریایی تهاجمی بکار برده میشوند. در اثر فعل و انفعالات بین ساختارهای فلزی کشتیها و سکوهای فراساحلی با محیط دریایی، خوردگی ایجاد میشود [7]. مشکلات خوردگی و مربوط به خوردگی بعنوان مهمترین فاکتورهایی که سبب فروافت سازهای مرتبط با سن کشتیها و بسیاری از سایر انواع سازههای فولادی میگردند، شناخته میشوند. خوردگی دارای اثر مضری از نقطه نظر ایمنی میباشد و میتواند موجب رخنه در ضخامت[2] ، ترکهای خستگی[3] ، شکستگی ترد[4] و گسیختگی ناپایدار[5] شود. چنین تاثیراتی بسته به نوع کشتی یا سازههای فراساحلی، میتواند سبب خطرات جانی و آلودگیهای زیست محیطی گردد.
کمیته ساختمان کشتی[6]، هشت نوع طبقهبندی را برای خوردگی تعریف نموده است. این طبقهبندیها مشتمل بر خوردگی یکسان یا عمومی، خوردگی گالوانیکی، خوردگی ناشی از ترک مویی، خوردگی حفرهدار، خوردگی درون دانهای، فروشست انتخابی[7]، خوردگی سرعت و ترکهای خوردگی تنشی میباشند. بعلاوه، این موضوع بایستی تاکید گردد که انواع خوردگیهای مزبور از یکدیگر کاملاً مستقل نبوده و درجات معینی از همپوشانی بین آنها برقرار است [6].
خوردگی در سازههای دریایی عمدتا به دو شکل خوردگی عمومی و خوردگی محلی دیده میشود. عموماً، خوردگی حفرهدار بعنوان بیشترین حمله خورنده محلی شناخته میشود و در مقایسه با کل سطح درمعرض، نسبتاً کوچک میباشند. بعنوان مثالی از خوردگی عمومی میتوان به چارچوبهای نگهدارنده کشتیهای فلهبر که دارای پوشش محافظتی نظیر رنگهای اپوکسی میباشند، اشاره نمود [7]. خوردگی حفره دار، در سازههای فولادی که در تماس با آب هستند یا در معرض شرایط آب و باد هستند، همچنین در مخازن حامل محمولههای مایع ایجاد میشود (شكل 1.1). معمولاً سوراخها در امتداد گرانش رشد مینمایند. حفرههای خیلی عمیق میتوانند سبب ایجاد سوراخ در صفحه گردیده و ممکن است سبب آلودگی جدی شوند. حفرهها در ورقهایی که زیر آب نمیروند و یا صرفاً در معرض اسپری آب هستند، ایجاد نمیشوند. در صورت مشاهده خوردگی متمرکز در چارچوبهای نگهدارنده فلهبرها، محلهای حملات خورنده که حفرهای هستند نسبتاً بزرگ میباشند (تقریباً تا قطر 50 میلیمتر) [6].
خوردگی عمومی مشکلی است که در المانهای صفحهای که فاقد پوشش محافظتی هستند، رخ میدهد (شكل 1.1) و سطوح ورق ممکن است بهصورت طیفهای موجیشکل خورده شوند [7]. این نوع خوردگی به شکل زنگ بر روی سطوح فولادی محافظت نشده ظاهر میشوند. مقیاس زنگ زدگی دائماً ارتباط آهن تازه با حملات خورنده را قطع می کند. همچنین، مقیاس زنگ زدگی دارای عمق ثابت و غلظت یکنواختی بر روی سطح میباشد. خوردگی عمومی بر روی کل سطح صفحه فولادی گسترش مییابد و سبب کاهش ضخامت، و متعاقب آن موجب تسهیل ترکهای خستگی، شکستگی ترد و گسیختگی ناپایدار میگردد [6].
2-1- سوابق مطالعات قبلی
ماتئوس و ویتز[1] [8]، تاثیرات خوردگی عمومی بر روی پس-کمانش ورقهای یک طرف خورده شده را با بهره گرفتن از شیوه کاهش ضخامت یکسان[2] و مدل شبه تصادفی سطح ضخامت[3] ارزیابی کردند. آنها مشخص نمودند که شیوه معمول کاهش ضخامت یکسان برای تخمین تاثیرات خوردگی عمومی روش دقیقی نمیباشد، برای اینکه مفاصل پلاستیک شکل میگیرد، به این دلیل که بینظمی سطح صفحه سبب کاهش اندکی در مقاومت نهایی آن گردیده و سبب تاثیر چشمگیری در رفتار پس-کمانش صفحه میگردد.
دایدولا و همکاران[4] [9]، یک مدل ریاضی را برای تخمین ضخامت باقیمانده ورقهای حفره شده، با بهره گرفتن از مقادیر میانگین و بیشینه دادههای حفرهها یا تعداد حفرهها و عمق عمیقترین حفره پیشنهاد دادند، و روشی را برای ارزیابی تاثیر کاهش ضخامت ناشی از حفره شدن موضعی و کمانش صفحه مبتنی بر شیوه احتمالاتی، ارائه نمودند. بعلاوه، آنها ابزارهایی را که توانایی ارزیابی مقاومت باقیمانده صفحات حفره شده را داشتند، توسعه دادند.
اسلیتر و همکاران[5] [10]، مطالعهای را بر روی مقاومت کمانشی و رفتار صفحات کشتی خورده شده را با بهره گرفتن از روش اجزاء محدود انجام دادند.
پایک و همکاران[6] [11]، [12]، بر روی مشخصات مقاومت نهایی المانهای صفحهای حفرهدار تحت نیروی فشاری محوری و نیروی برشی داخلی مطالعه نموده و فرمول نزدیکی را برای پیشبینی مقاومت نهایی صفحات حفرهدار با بهره گرفتن از شیوه فاکتور کاهش مقاومت (مجزا ) استنتاج نمودند. آنها با حالتی سرو کار داشتند که شکل حفرههای خوردگی بصورت استوانهای بود.
وانگ و همکاران[7] [4]، مطالعهای را بر روی فعل و انفعال متقابل گسیختگی کمانشی ورقهای فولادی تقویتشده انجام دادند. آنها در این ارزیابی، رفتار کمانشی چهار ورق تقویتشده با اندازه واقعی را که دارای تقویتکنندههای طولی از نوع سپری بودند را به روشهای تجربی و تحلیلی بررسی نمودند. روش اجزاء محدود بهکار گرفته شده در این ارزیابی، توانایی پیشبینی ظرفیت و حالتهای گسیختگی نمونهها را داشت. آنها در این مطالعه به وجود واکنش کمانشی متقابل، با توجه به تبعیت کمانش ورق از کمانش کلی، بصورت عملی پی بردند.
اوک و همکاران[8] [13]، بر روی ارزیابی اثرات خوردگی حفرهای موضعی که در یک یا چندین ناحیه بزرگ ممکن در مقاومت نهایی ورقهای تقویت نشده متمرکز میشوند، مطالعه نمودند. آنها روش رگرسیون چند متغیره را به منظور استنتاج فرمول جدیدی برای پیشبینی مقاومت نهایی ورقهای تقویت نشده با خوردگی موضعی بکار بستند. نتایج آنها مشخص نمود که طول، عرض و عمق خوردگی حفرهای دارای اثرات کاهنده بر روی مقاومت نهایی ورقها، هنگامیکه لاغری ورق صرفاً یک اثر حاشیهای بر روی کاهش مقاومت دارد، میباشد.
آنها همچنین تعیین کردند که موقعیت عرضی خوردگی حفرهای، عامل مهمی در تعیین مقدار کاهش مقاومت میباشد.
کمانش یا مقاومت نهایی ورقهای فولادی خورده شده، بصورت تجربی، عددی یا تحلیلی توسط برخی از محققان ارزیابی گردیده است [14]، [15]، [16]، [17]، [18]. بسیاری از اینگونه مطالعات تحقیقی بر روی ورقهای تقویت شده با خوردگی حفرهای انجام گرفتهاند.
خدمتی و همکاران[9] [5]، یک ارزیابی عددی را به منظور مطالعه تاثیر فشار جانبی بر روی رفتار پس-کمانش و مشخصات مقاومتی ورقهای آلومینیومی تقویتشده که درمعرض فشار درونصفحهای میباشند، انجام دادند. بدین منظور، مدلهای مختلفی که دارای چیدمانهای جوشی و تقویتکنندههای متفاوتی بودند، تجزیه و تحلیل گردیدند. از خلال مطالعات آنها مشخص گردید که تحت فشار درونصفحهای خالص، وجود و آرایش خطوط جوش تاثیر چشمگیری بر روی مقاومت کمانشی اولیه[10] مدلها ندارد، اما رفتار پس-کمانش و مشخصات مقاومتی مدلها بوسیله نوع تقویتکنندهها و آرایش جوش تحت تاثیر قرار میگیرند.
خدمتی و همکاران [6]، در تحقیقاتشان بر روی مقاومت صفحات فولادی با ضایعات خوردگی توزیع شده تصادفی در هر دو طرف ورق تحت فشار تک محوری مطالعه نمودند، آنها یک سری از آنالیزهای اجزاء محدود الاستیک-پلاستیک غیرخطی بر روی ورقها در شرایط مختلف خوردهنشده و بصورت تصادفی خوردهشده و تحت نیروی فشاری داخلی را انجام دادند و سری کامل روابط میانگین تنش-میانگین کرنش ورقها، با درنظر گرفتن تغییرات نسبت صفحه ورق و ضخامت یا لاغری ورق را استنتاج نمودند.
آنها همچنین نتیجه گرفتند که بیقاعدگی اجزاء محدود در مدلهای ورق با خوردگی عمومی تصادفی سبب برخی تغییرات کوچک در روابط میانگین تنش-میانگین کرنش پس از احراز مقاومت نهایی میگردد. منحنی رابطه میانگین تنش-میانگین کرنش برای ورق خورده شده یکنواخت معادل میتواند بعنوان منحنی میانگین برای واکنش فشاری ورقهای خورده شده تصادفی درنظر گرفته شود.
قوامی و خدمتی [19]، مطالعهای را به منظور آنالیز تغییرشکل غیرخطی بزرگ ورقهای تقویتشده انجام دادند. آنها بدین منظور یک سری ارزیابیهای تجربی را بر روی ورقهای فولادی تقویتشده که تحت فشار محوری یکنواخت بودند را تا رسیدن به گسیختگی نهایی، با بهره گرفتن از برنامه اجزاء محدود Ansys انجام دادند. در نتیجه این ارزیابی، مشخص گردید که المان SHELL43 میتواند برای مطالعه رفتار الاستیک-پلاستیک ورقهای تقویتشده بهکار برده شود.
[1] Mateus and Witz
[2] Uniform Thickness Reduction Approach
[3] Quasi-Random Thickness Surface Model
[4] Daidola et al.
[5] Slater et al.
[6] Paik et al.
[7] Wang et al.
[8] Ok et al.
[9] Khedmati et al.
[10] Initial Buckling Strength
[1] Extreme Loading Situation
[2] Thickness Penetration
[3] Fatigue Cracks
[4] Brittle Fracture
[5] Unstable Failure
[6] Ship Structure Committee
[7] Selective Leaching
[1] Dry Docks
:
هدف اصلی این پایان نامه پیوند بین دو مبحث دستگاه های مقید و اثر كازیمیر می باشد. نقطه مشترك این دو مبحث مهم را می توان در شرایط مرزی یافت. در این تحقیق برای به دست آوردن نیروی کازیمیر میدان های كلین گوردون، الكترومغناطیس و ریسمان باز، از روش كوانتش سیستم های مقید با در نظر گرفتن شرایط مرزی به عنوان قیود استفاده شده است. برای این منظور پس از محاسبه سازگاری قیود مذكور با هامیلتونی کل و اعمال زنجیره کامل قیود بر بسط فوریه مولفه های میدان مد های غیر فیزیکی حذف شده و به فضای فاز کاهش یافت دست می یابیم. سپس با تبدیل كروشه دیراك مدهای باقی مانده به جابه جا گر، سیستم را كوانتومی می کنیم و عملگر انرژی را بر حسب مدهایی فیزیکی بیان می کنیم. منشا اثر کازیمیر در مقایسه مدهای حاضر در عملگر انرژی دستگاه دارای شرایط مرزی با دستگاه بدون مرز است. به بیان دیگر نشان می دهیم که اعمال قیود ناشی از شرایط مرزی منجر به حذف برخی از مدها و ظهور نیروی کازیمیر می شود.
پیشگفتار:
0-1- پیدایش اثر كازیمیر
از زمان انتشار مقاله معروف كازیمیر[1] مشخص گردیده است كه تغییر در طیف افت و خیزها (چه کوانتومی و چه گرمایی) توسط مرزهای خارجی سبب ایجاد نوعی بر هم كنش می شود. اثر كازیمیر، در ساده ترین حالت، نیروی جاذبه بین دو صفحه صاف رسانای موازی است كه منشاء آن تغییر حالت خلاءالكترومغناطیسی توسط مرزها می باشد. اگر بخواهیم در یک عبارت ساده منشاء ایجاد نیروی كازیمیر را شرح دهیم باید بگوییم كه: شرایط مرزی، طیف میدان كوانتومی خلاء را تغییر می دهد و این تغییر طیف سبب پیدایش نیروی كازیمیر می شود.
اثر كازیمیر یكی ازنتایج اصلی الكترودینامیک كوانتومی (QED) است. توجیه این نیرو فقط در قالب الكترودینامیک كوانتومی امکان پذیر است و هیچ گونه تفسیر كلاسیكی از آن نمی توان یافت، به عبارت دیگر در حد كلاسیك(0ħ→) نیروی كازیمیر برابر با صفر می شود[2].
این اثر شامل نیرویی می شود كه نه می توان آن را اثر بار، نه گرانش و نه رد وبدل كردن ذرات بین دو جسم دانست. یک كمیت فیزیكی مهم در بحث نیروی كازیمیر فشار تابش میدان است. در غیر از حالت تشدید، فشار تابش داخل حفره كوچك تر از بیرون است و صفحه ها به طرف یكدیگر جذب می شوند و چون ثابت شده است كه در حالت تعادل ، مولفه های جاذبه كمی قوی تر از مولفه های دافعه هستند بنابراین برای دو
صفحه تخت كاملا موازی نیروی كازیمیر از نوع جاذبه است.
گر چه این نیرو فقط در فاصله های چند میكرونی قابل اندازه گیری است و مقدارش خیلی كوچك است ولی در فاصله های زیر میكرومتر، قوی ترین نیروی بین دو جسم طبیعی به شمار می رود. هر چند ما در زندگی خود به طور مستقیم با این قبیل فاصله های كوچك سروكار
نداریم اما اهمیت این فاصله ها در نانوساختارها و سیستم های میكروالكترومكانیكی (MEMS) مشخص می شود[3]. MEMS قابلیت های فراوان كاربردی در علوم مهندسی دارد و یكی از عمده ترین موارد استفاده آن در حال حاضر در سنسورهای فشار كیسه هوای اتومبیل ها است. از آن جا كه قطعات MEMS در ابعاد میكرون و زیر میكرون ساخته شده اند، نیروی كازیمیر باعث اتصال عناصر كوچك این قطعات خواهد شد. این اثر را می توان به نوعی از طریق فرضیه انرژی نقطه صفر (Zero Poin Energy) یا انرژی خلاء نیز بیان كرد. انرژی نقطه صفر به كوچك ترین انرژی امكان پذیر در یک سیستم مكانیک كوانتومی گفته می شود واگر بخواهیم رابطه آن را با نیروی كازیمیر بیان كنیم باید بگوییم كه : نیروی كازیمیر مشهورترین اثر مكانیكی نوسانات خلاء است.
0-2- هدف کلی
پس از آن که بحث دستگاه های مقید و کوانتش لاگرانژی های تكین نخستین بار توسط دیراك و برگمن مطرح شد، مقالات و مطالعات زیادی در این مورد و كوانتش آنها انجام شد. با توجه به آنكه كوانتش این دستگاه ها با اعمال قیود روی فضای حالتها انجام می شود، (كه در مورد قیود نوع اول روی فضای حالت نرمال و در مورد قیود نوع دوم در فضای فاز كاهش یافته اعمال می شود)، از كروشه های دیراك به جای كروشه های پواسون باید استفاده کرد و سپس آنها را به جای جابه جاگرهای كوانتومی تبدیل کرد.
در پایان نامه [4]، كوانتش میدان های اسكالر و الكترومغناطیس به طور كامل مورد بحث قرار گرفته است. در این پایان نامه از نتایج مرجع[4] استفاده کرده و پس از در نظر گرفتن شرایط مرزی برای هر میدان به عنوان قیود دیراک و بررسی سازگاری آنها و به دست آوردن هامیلتونی و همچنین با بهره گرفتن از کروشه های دیراک به جای کروشه های پواسون، مؤلفه های میدان محاسبه شده است. سپس با بهره گرفتن از مؤلفه های میدان به دست آمده و هم ارزی این معادلات میدان با انرژی میدان و هم چنین اعمال ویژه بسامدها، انرژی خلاء را از جمع روی همه مدهای بردار موج و طول موج به دست می آوریم كه به مقدار نامتناهی ω ħ می رسیم. برای متناهی كردن این مقدار از چندین تکنیک منطم سازی(تابع نمایی ، تابع زتای ریمان و تابع قطع) استفاده می كنیم. در نهایت از اختلاف انرژی خلاء فیزیكی( اعمال شرایط مرزی) و انرژی خلاء آزاد (بدون در نظر گرفتن شرایط مرزی) انرژی كازیمیر را به دست می آوریم. یعنی:
باید توجه کرد كه هر تغییر در شرایط مرزی مقدار این انرژی را تغییر می دهد.در نهایت با محاسبه انرژی فیزیكی، نیروی كازیمیر با مشتق گیری نسبت به فاصله به دست می آید.
روشی كه در بالا توضیح داده شد به طور اصولی در كلیه میدان های اسكالر و الكترومغناطیس به كار می رود. همچنین در مقاله دهقانی و شیرزاد [5] هامیلتونی برای ریسمان باز چه در شرایط معولی و چه در شرایطی كه میدان مغناطیسی B بر ریسمان وارد می شود، به دست آمده است،كاری كه در این تحقیق انجام شده است، همانند روش بالا انرژی خلاء را به دست آورده و با متناهی كردن آن توسط تابع زتای ریمان و سپس مشتق گیری از آن، نیروی كازیمیر در ریسمان باز چه در حضور میدان مغناطیسی و چه در غیاب آن را پیداکرده ایم.
0-3- محتوای پایان نامه
در فصل اول به طور مفصل به انرژی نقطه صفر، تاریخچه و مفهوم خلا كوانتومی ، پیدایش نیروهای وان در والس و در نتیجه ایجاد نیروی كازیمیر پرداخته شده است. و نشان داده شده است كه نیروهای وان در والس را می توان به انرژی نقطه صفر ربط داد. سپس رهیافت های مختلف در به دست آوردن نیروی كازیمیر كه شامل رهیافت انرژی نقطه صفر و رهیافت فشار تابشی نقطه صفر است را مورد بررسی قرار داده و در هر دو رهیافت پس از بررسی اختلاف آنها به نیروی كازیمیر رسیده ایم.
به مبحث مهم اثر دینامیک كازیمیر در سه قسمت وابستگی اثر دینامیک كازیمیر به شرایط مرزی، وابستگی آن به شكل سطح مرزها و اندازه گیری های تجربی این اثر پرداخته شده است. مانسته اثر كازیمیر در فیزیک كلاسیک و نقش اثر كازیمیر در شاخه های مختلف فیزیک نیز در پایان این فصل قید شده است.
فصل دوم این پایان نامه به معرفی دستگاه های مقید، لاگرانژی های تكین، قیود نوع اول و دوم، قیود اولیه و ثانویه، كروشه های پواشون و دیراک و كوانتش میدان های اسكالر و الكترومغناطیس اختصاص داده شده است كه این كوانش در حجم محدود و با بهره گرفتن از قیود دیراك انجام شده است. در این بخش از نتایج به دست آمده از مرجع [4] استفاده شده است. سپس از میدان های به دست آمده در این بخش،در فصل چهارم استفاده كرده نیروی كازیمیر متناظر برای هر میدان را به دست آورده ایم.
در فصل سوم این پایان نامه، مفهوم خلاء الكترومغناطیس به طور اصولی مورد بحث قرار داده شده است. پس از بررسی نوسانگر هارمونیک و هامیلتونی و معادلات حركت آن، در پایان این فصل با تعریف میدان مناسب، و استفاده از تابع قطع برای متناهی كردن مقدار انرژی پتانسیل و همچنین فرمول جمع اویلر- ماكلارین نیروی كازیمیر را به دست آورده ایم.
در فصل چهارم، در ابتدا نیروی كازیمیر را برای یک میدان كلین گوردون به دست آورده ایم. در بخش دوم این فصل نیروی كازیمیر را برای میدان الكترومغناطیسی با بهره گرفتن از بسط مولفه های میدان به دست آمده در فصل دوم به دست آورده ایم. با این تفاوت كه در مبحث های جداگانه به طور مفصل منظم سازی انرژی حالت پایه را با تابع خفیف بسامدی، تابع زتای ریمان و تابع قطع انجام داده ایم. در بخش سوم این فصل نیز با بهره گرفتن از فشار تابشی خلاء به نیروی كازییمر بر واحد سطح دست یافته ایم.
فصل پایانی این پایان نامه به محاسبه نیروی كازیمیر برای یک ریسمان باز در حضور میدان مغناطیسی اختصاص داده شده است. در آن جا به معرفی ریسمان باز، كنش ریسمان، معادلات میدان، هامیلتونی و شرایط مرزی ریسمان همراه با قیود مربوط پرداخته ایم، سپس انرژی نقطه صفر ریسمان را به دست آورده ایم و در پایان نیروی كازیمیر ریسمان را محاسبه كرده ایم. نتیجه مهمی را كه به آن رسیده ایم این است كه اعمال میدان مغناطیسی بر روی ریسمان به نیروی کازیمیر ریسمان هیچ تاثیری وارد نمی کند. بنابراین میدان مغناطیسی در نیروی كازیمیر ریسمان ظاهر نمی گردد.
:
مسئله انحلال پذیری متقابل به عنوان تابعی از نسبت اجزای سازنده[1]، دما و فشار در یک مخلوط برای طراحی دستگاهی جهت جداسازی یا تركیب(تشكیل) یک فاز همگن بسیار مفید میباشد. همچنین شرایط با دما و فشار بسیار زیاد شرایط لازم برای تحقیق در مورد انفجارهای چگال را فراهم میآورد. محصورسازی اینرسی با تراكم سوخت تا چگالی زیاد و زمان محصورسازی بسیار كوتاه روشی متفاوت را برای دستیابی به همجوشی هستهای ایجاد می كند. در این روش با بهره گرفتن از تابش باریكه های لیزری پرقدرت و یا ذرات باردار پرانرژی كه از شتابدهنده ها تولید می شوند، مواد همجوشی كننده را بهم نزدیک كرده و احتمال همجوشی را افزایش می دهند. برای این منظور ساچمه[2] های بسیار كوچك (به قطر 1.0 تا چند میلیمتر) كه حاوی سوخت همجوشی با چگالی حجمی هیدروژن مایع در حدود4.5 1022 cm-3 و چگالی جرمی حدود 0.2 g .cm-3 ]1[ هستند، از جهات مختلف و بطور متقارن و همزمان تحت تابش پرتوهای لیزر با انرژی بالا و یا پالس شدیدی از ذرات شتابدار پر انرژی قرار می گیرند. در دما و فشار خیلی زیاد، اندازه گیری مستقیم به علت شرایط نامطلوب آزمایشگاهی امكان پذیر نمی باشد، از این رو، یک رهیافت تئوری، در صورتیكه اثرات دما (T) و فشار(P) بوضوح در فرمالیزم وارد شود، بر اساس تئوری مخلوط بسیار مورد سودمند است. برای تحت شوك قرار دادن مخلوط مورد نظر باید معادلة حالت مخلوط معلوم باشد. لذا ما در این کار تحقیقاتی معادلۀ حالت مخلوط مایع در دمای پائین و فشار نسبتا بالا را مورد بررسی قرار دادهایم.
سیستم مخلوط به علت اهمیت زیاد از دیدگاه تئوری مورد توجه قرار گرفته است [4-2]. اجزاء سازندهای از این نوع بعنوان موادی كه در دما و فشار زیاد خصوصیات مشخصی را بروز دهند شناخته شده اند، زیرا در فشارهای زیاد این مخلوط جداشدگی فازی مایع-مایع را بروز میدهد. هر دو دارای برهمكنشهای جاذبه و دافعه پیچیدهای هستند [5]. از این رو نیروهای بین مولكولهای متفاوت در مخلوط نقش قابل توجهی [7و6] در شكل گیری خصوصیات آنها ایفا می كند. همچنین به علت جرم پایین این دو ذره تاثیرات كوانتمی را در دماهای پائین با اهمیت میگردد.
ما در این کار تحقیقاتی نظریه اختلال مكانیک آماری [8] را بر روی یک مخلوط دوتایی کروی سخت[3]با تصحیحات لازم برای نیروهای جاذبه و اثرات كوانتمی مورد مطالعه قرار دادهایم. شعاع پوسته سخت وابسته به دما است، از این رو، حلالیت مخلوط را در بازه وسیعی از دما و فشار میتوان بدست آورد. پتانسیلهای با دافعه ملایم مانند باکینگهام exp-6 حقیقیتر از پتانسیلهای یوکاوا یا چاه مربعی میباشد و خواص ترمودینامیکی دقیقی را ارائه میدهد [8]. از اینرو برای رسم نمودار فاز مخلوط دوتایی مولكولهای كروی سخت از پتانسیل باکینگهام استفاده کردهایم [9]. همچنین برای بررسی اثر كوانتمی، تصحیح مرتبه اول بسط ویگنر-كریكوود[4] [11و10] را اعمال خواهیم کرد. با احتساب بخشهای مختلف انرژی آزاد هلمهولتز، ما قادر به ارائه نسخه پیشرفتهتری از معادله حالت برای مطالعه عامل تراكم (Z) و دیگر پارامترهای ترمودینامیکی خواهیم بود. از این فرضیات برای تحقیق اثرات فشار و دما (T , P) روی خواص ترمودینامیكی مخلوط در بازه وسیعی از چگالی و نحوه ترکیب اجزای سازنده آن استفاده خواهیم نمود. علارغم ساختار ساده الكترونی هیدروژن و ایزوتوپهای آن، توصیف دقیقی از خصوصیاتشان در چگالیهای بالا تحت تراكم شوك و معادله حالت آنها در مخلوط در دست نیست اما به كمك بعضی مدلهای تقریبی وبا استغاده از تئوری اختلال و وردشی با تصحیح كوانتمی و پتانسیلexp-6 باكینگ هام برای استفاده در معادله شوك هیوگونیت برای
مخلوط فوق استفاده نمودهایم. چن[5] در سالهای 1999و2006 میلادی با بهره گرفتن از روش وردشی معادله حالت مخلوط رابدست آورد و با نتایج تجربی چگالی مایع بدست آمده توسط شبیه سازی و آزمایشات نیلز در1980 مقایسه نمود ونشان داد كه تئوری مورد استفاده با نتایج تجربی تطبیق خوبی دارد. در چند سال گذشته پیشرفت های چشم گیری به صورت تئوری و عملی در معادله حالت هیوگونیت دوتریم مایع وهلیم توسط ابلینگ و بولو[6] در1991 میلادی و انجام گرفت. علی[7] در 2004 میلادی بر روی مخلوط با بهره گرفتن از روش اختلال مطالعاتی انجام داده و در مقایسه با نتایج تجربی در محدوده خاص این روش را تائید نمود. اما روش های تئوریكی هنوز كاملا قادر به توصیف این عناصر ساده در چگالی های بالا نمیباشند. ما نیز با بهره گرفتن از روش های فوق به بررسی معادله حالت مخلوط دو ذره ، میپردازیم. لذا ابتدا در فصل یک اصول و مبانی همجوشی هستهای را شرح داده و ارتباط مطالعۀ انجام شده را با همجوشی بیان میکنیم. سپس در فصل دوم به شرح اصولی که نظریه مورد استفادۀ ما بر آن استوار است میپردازیم. در فصل سوم نحوه استفاده از این نظریه در مخلوط مورد نظر را ارائه خواهیم نمود. و در نهایت نتایج خود را با نتایج نظریات دیگر و شبیه سازی مقایسه كرده و پارامترهای ترمودینامیکی دیگر مربوط به مخلوط دوتریوم و تریتیوم را محاسبه میکنیم.
فصل اول: مبانی همجوشی هسته ای
تولید انرژی به همان روشی که در خورشید انجام میگیرد برای مدت های طولانی رؤیای بشر بوده است. از اوایل قرن بیستم، دانشمندان دریافتند که منبع انرژی خورشید-همانند دیگر ستارگان- فرایندی موسوم به همجوشی هستهای میباشد. تا سال 1950 هنوز فعالیتهای تحقیقاتی مقدماتی در این زمینه شروع نشده بود. اما امروزه کشورهای زیادی از تحقیق در ارتباط با همجوشی در جستجوی منبعی برای تولید انرژی پشتیبانی می کنند. انجام چنین تحقیقاتی بطور فزایندهای مهم است، زیرا مسئلۀ بحران انرژی روز به روز به موضوعی مهمتر بدل می شود.
امروزه استفاده از همجوشی بعنوان یكی از راه حلهای بحران انرژی مطرح است. بخصوص به این دلیل که مزیت های عدم آلودگی محیط زیست را در مقایسه با سوزاندن زغالسنگ و نفت یا رأكتورهای شكافت هستهای را داراست. همجوشی از این جهت که سوخت همجوشی قابل استخراج از آب دریاست، بسیار جذاب است، به طوریكه برای بیشتر کشورهای در جهان بطور مستقیم قابل دسترسی میباشد.
اگرچه پیشرفت های چشمگیری در علم همجوشی و تکنولوژی صورت گرفته، تا كنون هیچ رآکتور همجوشی در حال کار نیست. به عنوان اولین گام جهت درک همجوشی به روش محصورسازی لختی، ما به این سؤال که چگونه خورشید انرژی تولید می کند رجوع خواهیم نمود. کلید واکنشهای همجوشی هستهای و آزادسازی انرژی، در تعبیرات انرژی بستگی نهفته است. انیشتین نشان داد که جرم و انرژی توسط رابطه زیر با هم ارتباط دارند.
بنابراین ما با جرم هسته ها شروع میکنیم. مطابق با درک كنونی ما، جرم یک هسته در یک دیدگاه نیم كلاسیكی توسط فرمول نیمه تجربی زیر توصیف میگردد.
که و به ترتیب جرم پروتون و نوترون و ، ، ، و ثوابتی هستند که توسط برونیابی با انرژیهای بستگی تجربی بدست میآیند، جملۀ ذوجیت است. بنابراین انرژی بستگی (در واحد ) هسته اختلاف جرم اجزاء تشكیل دهندة هسته زمانیكه بسیار از یكدیگر دورند، بصورت زیر میباشد.
شکل (1-1) انرژی بستگی متوسط تجربی را به بصورت تابعی از نشان میدهد. این تابع یک بسشینه تخت را در ناحیهای برای هسته هایی نزدیک آهن نشان میدهد، که از پایدارترین هسته ها است. برای هسته های بسیار سبکتر یا سنگینتر از آهن، انرژی بستگی متوسط به طور قابل ملاحظهای کوچکتر است. این اختلاف در میزان انرژی بستگی پایه فرایند همجوشی و شکافت هستهای است. اساس همجوشی هستهای این است که دو هسته خیلی سبک باهم ترکیب شده و از ترکیب آنها یک هسته با انرژی بستگی بیشتر تشکیل شود (جرم کمتر). بنابراین انرژی مطابق فرمول انیشتین (1-1) آزاد می شود. همچنین هنگامی که یک هسته سنگین به دو پاره شکافته می شود، دو هسته با مجموع جرم کمتر از جرم هسته اولیه تولید می شود که به آزاد شدن انرژی میانجامد.
فرایندهای همجوشی زیادی بین عناصر سبك امکان پذیر است. هرچند مسئله در شروع چنین واکنشهایی این است که هستههای سبک بار مثبت دارند و با شدت زیادی یکدیگر را دفع می کنند. بنابراین تحت شرایط عادی فاصله بین هستهها برای انجام همجوشی بسیار زیاد است، که در این شرایط برهمکنش هستهای تقریبا غیرممکن است. اما علیرغم این مشكل چگونه این پدیده به تولید چنین انرژی قدرتمندی در خورشید میانجامد؟ در پاسخ به این سؤال میتوان گفت كه به علت دما (106K) و فشار بالا در مرکز خورشید، و وجود تعداد زیادی ذره، همچنین زمان به اندازه كافی طولانی، سطح مقطع برخورد برای چنین برهمکنشی به اندازه کافی بزرگ است که تولید انرژی مشخصه خورشید را نسبتاً ثابت نگه دارد. در خورشید انرژی در اصل از یک چرخه برهمکنش پروتون-پروتون بدست میآید.
[1] Components
[2] Pellet
[3] Hard sphere
[4] Wigner-Kirkwood
[5] Q. F. Chen
[6] Beulle, Ebling
[7] I. Ali, S. M. Osman
پلیمرها با توجه به قیمت ارزان و خصوصیات ویژهای که دارند میتوانند در صنایع و پزشکی کاربردهای وسیعی داشته باشند از خواص مهم آن می توان به همگنی بالا ، چسبندگی فیزیکی و شیمیایی ، استحکام مکانیکی مطلوب ، مناسب بودن برای استفاده در صنایع نانو و میکرو اشاره کرد.]1[ وجود خاصیت نیمرسانایی در تعدادی از پلیمرها، استفاده این مواد را در ترانزیستورها و صنایع الکترونیک و سنسورها مهیا میسازد.]2و3[
برای تغییر رفتار سطحی پلیمرها روشهای متعددی وجود دارد که در ذیل به بعضی از معایب و مزایای آنها اشاره می شود: از مزایای روشهای شیمیایی میتوان به سادگی و قیمت ارزان آن اشاره کرد و از معایب آن میتوان استفاده از مواد سمی ، همگنی اندک ، مواد آلاینده زیاد و برخی مواد آلاینده مزاحم را نام برد. در روش های فیزیکی مثل کندوپاش با وجود اینکه مواد آلاینده و مزاحم کم می باشد و از مواد سمی استفاده نمی شود ولی انرژی زیادی مورد نیاز است که از لحاظ اقتصادی مقرون به صرفه نیست. بنابراین استفاده از محیط پلاسما می تواند یکی از انتخابهای مناسب برای این کار باشد زیرا هم مواد آلاینده، مزاحم وسمی در آن به کار نمی رود و هم اینکه انرژی کمتری برای این کار مورد نیاز است.]4[
در معرض پلاسما قرار دادن پلیمرها باعث ایجاد تغییراتی درسطح آن میشود و برخی از خواص آن را برای استفاده در صنعت بهبود میبخشد از آن جمله می توان به تغییراتی درمیزان آبدوستی و آبگریزی و بار سطحی]5[، نابودی حفرههای هوای ایجاد شده در سطح پلیمر توسط پلاسما وافزایش رسانش الکتریکی آن]3[ اشاره کرد، و از اثرات دیگر پلاسما بر پلیمرها تغییر در ضریب شکست و تغییرات در میزان جذب فیزیکی یا شیمیایی، شکست برخی پیوندهای کووالانسی]6[ و افزایش انرژی سطح در پلیمر مورد نظر میباشد.]7[
پلاسما امروزه در زمینه های مختلفی در هوا فضا ، پزشکی و صنعت به کار میرود و یکی از کاربردهای مهم آن، ایجاد تغییراتی در ماده بخصوص در سطح آن میباشدکه این تغییرات می تواند فرایند نانوکردن، تغییر در مورفولوژی[1] سطح ، باردار کردن سطح و تغییراتی در پیوندهای شیمیایی ماده باشد.]8[
با قرار دادن پلیمرها در معرض پلاسما، خواص و اثراتی در آنها ایجاد می شود که میتوان از آن خواص در جهت بهره برداری بیشتر در انرژی ،
صنعت وپزشکی استفاده کرد.که از آن جمله میتوان به تغییراتی در مورفولوژی سطح اشاره کرد]1[ و با برجسته کردن سطح میتوان مساحت سطح تماس را افزایش داد و هم چنین می توان به تغییر میزان آبدوستی وآب گریزی سطح اشاره کرد.]4[
در این پژوهش، سطح فیلم نازک[2] پلیمری تحت تاثیر پلاسما مورد آزمایش و مطالعه قرار داده شده است و مشاهده شده است که پلاسما میتواند اثراتی را در سطح پلیمر باقی گذارد که می تواند منجر به ایجاد پیوندهایی در سطح شود و برخی از خواص شیمیایی و فیزیکی سطح را تغییر دهدکه در نتیجه تغییر این خواص، بعضی از مشخصات سطح مثل آبدوستی و آب گریزی سطح تغییر می کند.]9[
هدف از این پژوهش ، بررسی تغییرات ایجاد شده از تحت تاثیر قرار دادن پلیمرهای آلاییده با رنگینه به صورت لایه نازک در معرض پلاسما میباشد. ازبرخی از این تغییرات میتوان به افزایش یا کاهش میزان برخی از گروههای عاملی پلیمر، شکستن و ایجاد پیوندهای جدید اشاره کرد ونتایج تاثیر پلاسمای تخلیه الکتریکی تابان[3] با جریان مستقیم ومتناوب و اثرگازهای مختلف مورد مقایسه واقع می شود و در کنار این موارد می توان رفتار رنگینه آلاییده در پلیمر را نیز مورد مطالعه قرار داد.
در این فصل به طور مختصر به بررسی اطلاعات موجود در زمینه پلاسما ، پلیمر ، رنگینه و نحوه اثر پلاسما بر پلیمر و یافته های موجود در این زمینه میپردازیم.
پلاسما گاز یونیزه و شبهخنثا[4]یی است که از ذرات باردار و خنثی تشکیل می شود و رفتار جمعی از خود نشان میدهد. واژه شبهخنثی به این معنی است که در پلاسما بارهای مثبت و منفی وجود دارد و در عین حال این بارهای مثبت و منفی تقریباً برابر یکدیگرند.[11و10]
ابتدا این گاز یونیزه بوسیله کروکز[5]، در سال 1879 بعنوان حالت چهارم ماده نامیده شد و 49 سال بعد در سال 1928 ، این حالت چهارم ماده اسم خود را از ایروینگ لانگمویر[6] گرفت و او نام “پلاسما” را بر آن نهاد. [12]
پلاسما هم در طبیعت یافت می شود و هم در آزمایشگاه و صنعت ساخته می شود و هر دوی آنها شبهخنثی هستند. پلاسمای طبیعی بیش از 99% از جهان قابل دید ما را تشکیل میدهد. از پلاسماهای طبیعی میتوان کرونای خورشیدی، بادهای خورشیدی، سحابیها، یونوسفر زمین، رعد و برق و شفق قطبی را نام برد. در آزمایشگاه، پلاسما بوسیله شعله، لیزر و تخلیه الکتریکی ایجاد می شود. پلاسما در صنعت در دستگاههای برش، اسپری پلاسما و فرایند اصلاح سطح به کار میرود. همچنین پلاسماهای ساخته بشر میتوانند در سنتزهای گرما هستهای، الکترونیک، لامپهای فلوئورسنت و … کاربرد داشته باشند و بسیاری از کارخانههای تولید کننده سخت افزارهای کامپیوتری، تلفن همراه و تلویزیونهای پلاسما، از تکنولوژی پلاسما کمک میگیرند. و از دیگر کاربردهای پلاسما میتوان لایهنشانی ، ضد عفونی آب و هوا، سوزاندن زباله و مواد مضر وتبدیل آنها به ترکیبات بیخطر را نام برد. [12-10]