یکی از مهمترین حوادث طبیعی که همواره زندگی انسانها را دچار دگرگونی کرده و گاهی تمدنهای بشری را با تخریب ساختگاه به نابودی کشانده، زلزله است. از این رو، انسان همواره سعی در شناسایی و مقابله با خطرات ناشی از زلزله داشته و هنوز هم موفق به مهار کامل این انرژی عظیم نشده است. حال با وجود آنکه محققین زیادی در زمینه ساخت و ساز ایمن و مناسب، تحقیقات ارزندهای انجام دادهاند، کماکان تعداد زیادی از ساکنین این کره خاکی هر ساله در زیر آوارهای به وجود آمده از زلزله مدفون میگردند و سازههای بسیاری کارایی خود را پس از زلزله از دست می دهند یا متلاشی میشوند.
ایران از نظر لرزهخیزی در منطقه فعال جهان قرار دارد و به گواهی اطلاعات مستند علمی و مشاهدات قرن بیستم، از خطرپذیرترین مناطق جهان در اثر زمینلرزههای پرقدرت محسوب می شود. در حال حاضر ایران در صدر كشورهایی است كه وقوع زلزله در آن با تلفات جانی بالا همراه است و در سالهای اخیر به طور متوسط هر پنج سال یک زمین لرزه با صدمات جانی و مالی بسیار بالا در نقطهای از كشور رخ داده است. گرچه جلوگیری كامل از خسارات ناشی از زلزلههای شدید بسیار دشوار است لیكن با افزایش سطح اطلاعات در رابطه با لرزهخیزی كشور، شناسایی و مطالعه دقیق وضعیت آسیبپذیری ساختمانها، ایمنسازی و مقاومسازی صحیح و اصولی آنها، می توان تا حد مطلوب تلفات و خسارات ناشی از زلزلههای آتی را كاهش داد.]1[
در راستای شناسایی و مهار این پدیده، محققین همواره سعی داشته اند تا آییننامه های بسیاری را در سراسر دنیا برای محاسبه و ساخت سازههای مقاوم در برابر زلزله تهیه کنند و روشهای بسیاری برای محاسبه این نیرو و طراحی سازهها در برابر آن ارائه دهند. پس از محاسبه نیروی زلزله، روشهایی جهت طراحی ساختمان مقاوم در برابر زلزله مطرح میشوند که این روشها را میتوان به دو دسته کلاسیک (سنتی) و مدرن تقسیم بندی کرد.
در روشهای کلاسیک، طراحی بر اساس حداکثر نیروی اعمال شده به ساختمان، که با ترکیب نیروهای احتمالی بیانشده در آییننامه های مختلف به دست میآید، انجام می شود. تکتک اجزای سازه را براساس روش مقاومت نهایی یا نیروی حداکثر طراحی می کنند. اما در روشهای مدرن، پایداری سازه با روش طراحی براساس عملکرد نیز مطرح شده است.]2[
در سیستمهای سازهای معمولا دو عامل برای طراحان بسیار مهم است. اول ایمنی سازه و دوم راحتی ساکنین در برابر بارهای خارجی همچون باد و زلزله. برای رسیدن به این هدف دو عامل جابجایی و شتاب مطلق به ترتیب اثرگذارند و بایستی کنترل شوند. در این راستا سیستمهای مختلفی ارائه شده است که به طور کلی رفتار سازه را به گونه ای تغییر می دهند که انرژی ورودی زلزله، به اجزای اصلی سازه صدمهای وارد نکند.
بعضی از سیستمها را میتوان بر روی سازههای موجود نیز پیاده نمود که در صورت لزوم بعد از رخداد زلزله نیز قابل تعویض و یا تعمیر باشند. با توجه به اینکه سازههای غیرمقاوم در برابر زلزله در کشورمان زیاد یافت میشوند و با توجه به این نکته که استفاده از سیستمهای الحاقی به نحو بسیار مطلوبی پاسخ دینامیکی سازهها را کاهش میدهد، لذا استفاده از این سیستمها در کشورمان حائز اهمیت میباشد.
گرچه بارهای دینامیکی وارد بر سیستمهای سازهای ممکن است ناشی از عوامل مختلفی مانند اثر باد و موج و حرکت خودروها باشد، بدون شک یکی از انواع این بارهای دینامیکی که برای مهندسین سازه از بیشترین اهمیت برخوردار بوده، تحریکی است که توسط زلزلهها ایجاد می شود. البته اهمیت مساله زلزله تا حدودی به علت نتایج زیانباری است که یک زلزله در یک منطقه پرجمعیت بهجا میگذارد. از آنجا که طراحی سازههای اقتصادی با معماریها و ابعاد گوناگون که قادر به تحمل نیروهای حاصل از یک زمینلرزه قوی باشند، توانایی بالایی را در هنر و علم مهندسی طلب می کند، منطقی به نظر میرسد که رشته مهندسی زلزله به عنوان چارچوبی که در آن کاربرد تئوریها و تکنیکهای ارائه شده در دینامیک سازهها و … به نمایش گذاشته می شود، مورد استفاده قرار گیرد.
توانایی روشهای متداول طراحی و ساخت سازههای موجود بسیار محدود میباشد و پاسخگوی نیازهای روزافزون طراحی سازههای جدید نیست. به عنوان مثال بلندتر شدن ساختمانها به دلیل کمبود زمین در کلان شهرها و برآورده کردن نیازهای معماری جدید با فرمهای غیر معمول از جمله مشکلاتی است که نیاز به تکنولوژیهای جدید در امر ساخت و ساز را در کشورمان نمایان می کند.
سیستمهای سازهای مختلفی جهت مقابله با نیروهای جانبی ناشی از زلزله در ساختمانهای فولادی مورد استفاده قرار گرفته است که میتوان به سیستم قاب خمشی مقاوم، سیستم مهاربندیشده همگرا و سیستم مهاربندیشده واگرا اشاره کرد. هر یک از این سیستمها به نوبه خود دارای معایب و محاسن مربوط به خود میباشند که در طول سالهای اخیر موضوع تحقیق علم مهندسی زلزله بوده است.
در کشور ایران استفاده از سیستمهای مهاربندی همگرا در بین مهندسین سازه بسیار رایج میباشد. لذا پرداختن به این موضوع و بیان معایب این سیستمها و ارائه راهکارهای کاربردی در زمینه رفع این معایب، می تواند کمک شایانی در پیشرفت صنعت ساختمانسازی ایران در جهت ایمنتر شدن ساختمانها نماید.
یکی از انواع سیستمهای مهاربند همگرا، سیستم مهاربندهای مقاوم در برابر کمانش یا به اختصار BRB[1] میباشد. این سیستم یکی از قویترین سیستمهای موجود در امر کنترل ارتعاشات نامطلوب سازهها در برابر نیروهای جانبی میباشد و امروزه در اکثر نقاط جهان از این سیستم جهت مستهلک کردن انرژی ناشی از زلزله، به وفور استفاده می شود.
در این نوع مهاربندها، هدف رسیدن مهاربند تحت بار محوری فشاری به حد تسلیم با جلوگیری کردن از کمانش عضو میباشد که این امر توسط یک مکانیزم خارجی انجام می شود. بنابراین مهاربند هم در کشش و هم در فشار بدون اینکه کمانش کند، تسلیم می شود. همچنین از آنجاییکه کمانش مهاربند جهت استهلاک انرژی مطلوب نیست، این سیستم که رفتار الاستوپلاستیک دارد، جهت مستهلک کردن انرژی زلزله بسیار موثر عمل می کند.]3[
در تحقیق حاضر، مطالعاتی بر روی مهاربندهای مقاوم در برابرکمانش به عنوان یک سیستم مقاوم در برابر نیروهای ناشی از زلزله انجام شده است. از آنجاییکه نصب سیستمهای مقاوم در برابر زلزله از نظر اقتصادی و مقاومسازی، کمک شایانی به رفتار مناسب سازه در برابر بارهای دینامیکی می کند، تحقیق بر روی این سیستمها دارای اهمیت زیادی میباشد.
مهاربندهای مقاوم در برابر کمانش دارای محاسن زیادی نسبت به مهاربندهای همگرای معمولی میباشند و از نظر سازهای نیز رفتار مطلوبی در برابر نیروهای جانبی از خود نشان میدهند. در کنار این محاسن، یک سری معایب برای این مهاربندها بیان شده است که در زیر به این معایب اشاره می شود:
[1] Buckling Restrained Brace
بررسی و تبیین ارتعاشات نیرومند زمین در دو شاخه مهندسی سازه (دیدگاه تحلیل رفتار سازه) و مهندسی زلزله (دیدگاه تحلیل رفتار زمین)، دارای اهمیت فراوان است. شایان توجه است كه برای حداقل كردن خسارت حاصل از زلزله های بزرگ، نیازمندی به تدوین، تعمیم و گسترش دیدگاه های تحلیلی نسبت به ارتعاشات نیرومند زمین، بیش از پیش آشكار گردیده است.
زمین لرزه نزدیک گسل دارای مشخصات ویژه ای است که آن را از زمین لرزه حوزه دور از گسل متمایز می سازد. تجربه زلزله های گذشته نشان داده است که این مشخصات، اثرات قابل توجهی روی نیاز لرزه ای سازه ها وارد می نماید. به ویژه در ركوردهای سرعت زلزله های نزدیک گسل، عبارت از وجود سرعت های نموی بزرگ زمین، كه در پی پالس های بلند مدت شتاب ایجاد می شود. نمودی از این اثرات به شكل ایجاد تغییر مكان های نوسانی بزرگ، كه در ركورد تغییر مكان زمین نیز دیده می شود. وجود این مقادیر بزرگ در پارامتر های حركات زمین در نزدیک گسل، مشخصه بارز ركوردهای زلزله ها نظیر زلزله نورتریج، زلزله كوبه، زلزله چی چی تایوان و برای زلزله های حوزه نزدیک گسل یا به بیان دیگر زلزله های با فاصله كم نسبت به گسل لرزه زا می باشند. با توجه به اینکه بسیاری از شهرهای بزرگ جهان از جمله کلان شهر تهران در معرض زمین لرزه نزدیک گسل قرار دارند، نیاز به شناخت خصوصیات زلزله نزدیک گسل و اثر آن بر سیستم های مهندسی بیش از پیش ضروری به نظر می رسد.
افزایش جمعیت شهرهای نزدیک به گسل های فعال (مانند تهران، تبریز، لوس آنجلس و توکیو)، احتمال وقوع زلزله ای با تلفات بسیار زیاد را در آینده نزدیک دوچندان می کند. این مسئله از این حقیقت ناشی می شود که زلزله نزدیک گسل[1] در مقایسه به زلزله دور از گسل، نیاز لرزه ای بزرگتری می تواند به سازه تحمیل نماید و در نتیجه باعث وقوع خسارات زیادی در زلزله های گذشته شده است[1]. این مسئله نشان می دهد که بررسی رفتار لرزه ای سازه ها تحت زلزله نزدیک گسل دارای اهمیت بسیاری می باشد.
برخی از مشخصاتی که زلزله نزدیک گسل را از زلزله دور از گسل متمایز می سازد عبارتند از اثر جهت داری[2] ، اثر جابجایی ماندگار[3] زمانی که جهت پارگی گسل به سمت یک سایت به خصوص باشد و سرعت پارگی گسل نزدیک به سرعت انتشار امواج برشی باشد، در آن سایت اثر جهت داری مشاهده می شود. در این حالت سهم قابل توجهی از انرژی در یک بازه زمانی کوتاه به سایت منتقل می گردد[2]. مقدار زیاد انرژی وارده در بازه زمانی کوتاه، موجب بوجود آمدن یک پالس مجزا در تاریخچه زمانی سرعت زمین لرزه می گردد. این اثر اغلب در مولفه عمود بر گسل قابل مشاهده می باشد[3]. وجود این پالس باعث بزرگتر شدن معیار شدت طیف پاسخ (Sa) در پریودهای نزدیک به پریود پالس می گردد. بنابراین پاسخ سازه ها تحت زلزله دارای پالس، در مقایسه با زلزله دور از گسل متفاوت خواهد بود. گذشته خصوصیت فوق، نگاشت های ثبت شده در طی زلزله های نزدیک گسل اخیر همانند زمین لرزه کوکائلی[4] تركیه (1999) و همچنین زلزله چی چی[5] تایوان (1999)،حاوی مقادیر بزرگی جابجایی دائمی زمین می باشند كه به این پدیده جابجایی ماندگار گفته می شود. این تغییر شکل در طول زمان لغزش در راستای لغزش گسل رخ داده و بنابراین عموما در مولفه موازی گسل قابل مشاهده می باشد. به همین جهت در اکثر موارد با اثرات ناشی از جهت داری ترکیب نمی گردد[4].
[1] near fault ground motion
[2] directivity
[3] fling step
[4] kocaeli
[5] chi chi
ای در ارتباط با سیستم های لوله در لوله
سیستم های لوله در لوله[1] به طور بسیار گسترده ای در کاربردهای خط لوله ای که در آنها استفاده از عایق گرمایی خط بسیار اهمیت دارد، بکار رفته اند. معمولا، فاصله بین دو لوله در این سیستم ها می تواند خالی بوده و یا در بر گیرنده مواد عایق غیر سازه ای باشد. در آب های عمیق، لوله خارجی باید طوری طراحی شود تا بتواند در برابر خرابی ناشی از فشارهای خارجی محیط مقاوم باشد در حالی که لوله داخلی، در مرحله اول طوری طراحی می شود که در برابر فشارهای هیدروکربنی مایع موجود در دورن آنها مقاوم باشد. علاوه بر این، تحلیل هایی که در آنها بسیاری از فاکتورهای دیگر در نظر گرفته شده اند نیز در این زمینه در دسترس هستند. بنابراین سیستم های لوله در لوله در آب های عمیق را باید برای مقاومت در برابر خرابی لوله خارجی طراحی نمود. همانند خطوط لوله ای تکی، در طول نصب و راه اندازی سازه ها، شرائط خارج از طرح در سازه ها می تواند در آنها بوجود آید که این امر منجر به خرابی های درونی در سازه خواهد شد[1] .
در سیستم های لوله در لوله دریایی عواملی مانند خمش زیاد در زمان نصب لوله، تنش اضافی ناشی از ناهمواری بستر دریا، برخورد عوامل خارجی مانند لنگر کشتی، ابزارهای ماهیگیری و کاهش ضخامت جدار لوله در اثر فرایندهائی مانند خوردگی، سائیدگی و فرسایش می توانند از عمده دلایل ایجاد کمانش باشند[2،3].
کمانش و خرابی در اثر فشارهای خارجی از پیامدهای بسیار مهمی می باشند که باید در طراحی خطوط لوله ای مانند سیستم های لوله در لوله
نصب شده در دریا[2] مد نظر قرار داده شوند. مشکل دومی که در این زمینه وجود دارد، و معمولا اهمیت آن کمتر از مورد اشاره شده در بالا نیست، به انتشار کمانش[3] ارتباط دارد که می تواند در نهایت بقای خط را با مشکل مواجه نماید. انتشار کمانش می تواند از مقطعی ضعیف شده در لوله، برای مثال از یک فرورفتگی آغاز شود و این ضعیف شدگی می تواند در اثر پدیده هائی مانند تاثیر اجسام خارجی نشات گرفته باشد، زمانی که کمانش شروع شود، می توان شاهد انتشار آن با سرعت های بالا بود که این امر می تواند در نهایت منجر به خرابی بسیار سریع در تمام خط لوله گردد. فشار انتشار PP حداقل فشاری است که در آن شاهد انتشار کمانش خواهیم بود. این فشار به فشار مشخصه در خط لوله نیز موسوم است، این فشار معمولا بین 15-20 درصد فشار خرابیPCO است و در نتیجه در بسیاری از پروژه ها طراحی خط لوله بر اساس فشار انتشار غیر عملی می باشد. برای مقابله با این مسئله طراحی بر اساس فشار خرابی انجام می شود و در عوض از ابزارهائی به نام کمانشگیر[4] در بازه هائی منظم در طول خط استفاده می شود. در زمان آغاز کمانش، این کمانشگیرها خسارت به طولی از لوله را محدود می نمایند[4].
[1]Pipe in Pipe Systems
[2]Marine Pipelines
[3]Buckle Propagation
[4]Buckle Arrestors
(مترجم)
عمدتاً فلوطین را پایه گذار مکتب نوافلاطونی میدانند. اصطلاح مکتب نوافلاطونی اولین بار در اوایل قرن نوزدهم به آخرین مرحله شکوفایی فلسفه در یونان باستان که از قرن سوم میلادی آغاز شد، اطلاق گردید. مکتب نوافلاطونی بیانگر مرحله جدیدی است که در آن فلوطین فلسفه افلاطونی را گسترش داد. این مکتب هر چند التقاطی از فلسفههای پیشین نیست اما میتوان گفت از همه آنها به ویژه فلسفه فیثاغوری، مشائی و رواقی بهره برده است. مکتب نوافلاطونی خود دارای سه مرحله است. مرحله اول مربوط به فلسفه فلوطین و شاگردان بلافصل او در روم است. در مرحله دوم یامبلیکوس در حوزه سوریه و در مرحله سوم پروکلوس در حوزه آتن مکتب نوافلاطونی را بسط دادند.[1] این مکتب در سومین مرحلهاش به مجموعه ای از شعائر رمزی تبدیل شد و به دست کسانی افتاد که اعمال جادویی را در کسب معرفت مؤثرتر از تأمل و تفکر میدانستند. در این مرحله تفکر نوافلاطونی اصالت خود را از دست داد. بنابراین، این مکتب فقط در مرحله اول یعنی مرحله ای که بیواسطه به فلوطین میرسد و شاید اندکی در مرحله دوم مورد توجه و شایسته مطالعه و بررسی است.
برای بیان وجه اشتراک و تمایز فلسفه نوافلاطونی از فلسفه یونان باید به تاریخچه کوتاهی از پیدایش این فلسفه اشاره کرد. فرهنگ یونانی، به واسطه لشکرکشیهای اسکندر، کشورهای مغلوب را احاطه نمود و پس از فروپاشی امپراطوری وی، سلطه خود را در آن مناطق حفظ کرد. اما در کنار آتن مراکز علمی و فلسفی دیگری مانند روم به وجود آمد. در این دوره فیلسوف خلاق و مبدعی که از نظر عمق فکری به درجه ارسطو و افلاطون برسد وجود نداشت. اما فلسفه از لحاظ گسترش و نفوذ، رشد بسیاری داشت و مکاتب زیادی از قبیل مکتب رواقیان و اپیکوریان و کلبیان و شکاکان و فیثاغوریان جدید و . . . پدید آمد. در روم مکتبی التقاطی به نمایندگی سیسرون به وجود آمد که از میان
مکاتب مختلف آنچه را برای رومیانِِِِِِِِِِِِ عملگرا سودمند بود به هم پیوند میداد. در اسکندریه نیز فرهنگ یونانی با فرهنگ یهودی در هم آمیخت و مکتب التقاطی دیگری که نمایندهاش فیلون بود پدید آمد.
به دنبال پیدایش این مکاتب التقاطی دوره تازهای در فلسفه آغاز شد که با فلسفه یونانی تفاوت بنیادی دارد. همه شعبههای فلسفه یونان، فلسفه وجود این جهان محسوس است و این جهان برای فیلسوف امری مقدس است. لذا در جستوجو برای کشف چگونگی پیدایش جهان است که فیلسوف یونانی به خدا میرسد و خدا او را به شناسایی جهان و انسان رهنمون می شود و از این رو حسرت و آرزوی بازگشت به جهان دیگر در این فلسفه جایگاهی ندارد. البته در برخی رسالههای افلاطون مانند فایدروس اینگونه به نظر میرسد که مسأله هبوط روح و سپس بازگشت او به وطن اصلی مطرح می شود. حقیقت این است که از نظر افلاطون روح سعی می کند خود را از علایق مادی برهاند تا به عالم معقول عروج کند، اما برای فیلسوف یونانی این عروج فقط برای توانایی شناخت این جهان است. بنابراین در پی این عروج، بازگشت است. هدف افلاطون از پرداختن به فلسفه، فهمیدن چگونگی نظام جامعه و دولت برای رسیدن انسان به حیاتی آزاد در این عالم است. اما در فلسفه نوافلاطونی و فلسفههایی مانند غنوصیه که به موازات آن شکل گرفت، به این عالم به چشم حقارت نگریسته می شود و فیلسوف به دنبال گریز از جهان محسوس و یگانه شدن با واحد است و بازگشتی مطرح نیست. حتی اگر فیلسوف نوافلاطونی این جهان را زیبا ببیند، همانگونه که فلوطین زیبایی این جهان را میستاید، اما معتقد است این زیبایی اثر واحد یا خداست و ناشی از این است که این جهان وسیلهای برای نیل به آن عالم و عروج به سوی واحد است. ذکر این نکته ضروری است که فیلسوفان نوافلاطونی خود را بنیانگذار فلسفهای نو نمیدانند و مقصودشان زدودن انحرافات از فلسفه افلاطون است. اما بی آنکه خود بدانند فلسفهای متفاوت از فلسفه یونان و افلاطون به وجود آوردهاند که در هدف و محتوا دارای تفاوتهای اساسی است.[2]
البته در کنار این تفاوتها، شباهتهایی نیز بین فلسفه نوافلاطونی و فلسفه یونانی یا فلسفه افلاطون وجود دارد. از جمله این که زبانی که نوافلاطونیان به کار میگیرند همان زبان یونانی است و از اصطلاحات فلسفه یونانی استفاده می کنند. همچنین فلسفه فلوطین فلسفه تعقل و استدلال است و در برابر فلسفه مسیحی که متکی به ایمان و تعبد و مرجعیت مقامی بالاتر از عقل است، توانسته است حاکمیت عقل را دوباره در فلسفه مستحکم سازد. البته همانطور که قبلاً اشاره شد در دو دوره آخر فلسفه نوافلاطونی، یعنی پس از دوره متعلق به فلوطین، این جنبه کمرنگ شد و تعالیم دینی و اعمال جادویی جایگاهی یافتند.
بتن یكی از پرمصرفترین مصالح شناخته شده در مهندسی عمران است كه روز به روز بر استفاده از آن افزوده میشود. در این میان از یک سو، با پیشرفت علم و تكنولوژی و پیدایش سیستمهای پیچیدهتر ساختمانی و از سوی دیگر با روند رو به گسترش ساخت و سازهای عمرانی در سطح كلان، نیاز به بكارگیری مصالح ساختمانی جدیدتر با كارآیی بیشتر، بسیار محسوس میباشد. از آنجائیكه طراحی سازههای بتن مسلح روز به روز پیشرفتهتر میگردد، شكل طراحی شدة مقاطع و اعضاء سازهایی نیز پیچیدهتر گردیده و دیگر تراكم آرماتورگذاری در چنین مقاطعی امری غیرعادی جلوه نمیكند. بعلاوه نبود یا كمبود كارگران ماهر و مجرب در محل احداث سازه از سویی دیگر، از دیگر مشكلاتی بوده كه مهندسان عمران همواره با آن دست به گریبان بودهاند.
استفاده از بتن خود تراكم راهحل مناسبی برای رفع مشكلات احتمالی ذكر شده است. بتن خود تراكم، تكنولوژی تازهای از بتن است كه در آن، بتن میتواند به شكلهای مختلف با آرماتوربندی حجیم در قالب ریخته شود، بدون اینكه نیاز به هرگونه ویبرهای باشد. از خصوصیات جالب آن این است كه تحت اثر وزن،خودراتحكیم نموده و هم زمان یكنواختی خود را نیزحفظ می كند
بتن خود تراکم اولین بار برای دستیابی به بتن با ساختار پایدار در سال 1988 مطرح گردید و مطالعات اولیه پیرامون کارایی بتن خود تراکم، توسط اکامورا اگاوا (1989) و اکامورا (1993) در دانشگاه توکیو انجام گرفت [1-2-3]. طبق نظریهای، بتن خود تراکم بتنی است که دارای سیالیتی باشد که تراکم آن بدون نیاز به انرژی خارجی انجام شود و به علاوه، در حین و پس از اتمام بتنریزی بصورت یکپارچه باقی بماند و به راحتی در خلال آرماتورهای متراکم حرکت کند [4]. اجرای سریعتر ساختمانها، کاهش نیروی انسانی به دلیل خود تراکمی بودن SCC، بهبود دوام به دلیل کاهش نفوذپذیری، آزادی عمل بیشتر در طراحی مقاطع از مزایای استفاده از بتن SCC میباشد.
اولین کاربرد عملی بتن خود تراکم درساخت یک ساختمان در سال1990 در ژاپن بوده و پس از آن ،
درسال 1991 از این بتن جهت ساخت برجهای پل معلق کابلی شینکیبا اوهاشی استفاده به عمل آمد که درنوع خود بی نظیر بود [5].
در 20 سال اخیر، تمرکز زیادی بر روی قابلیت استفاده از انواع زباله های شهری در صنایع مواد ساختمانی رواج داده شده است و تحقیقات بسیاری در این زمینه صورت گرفته است. که در بسیاری از موارد اضافه نمودن مواد بازیافتی علاوه بر فوایدی که برای حفظ محیط زیست به همراه دارد موجب تاثیرات خوبی بر روی خواص محصولات نهایی شده است.
یکی از مواد بازیافتی جدید که در صنعت بتن از آن استفاده می شود لاستیک می باشد. به منظور حل بحران مصرف مقادیر زیاد مواد لاستیکی بازیافت شده، استفاده مجدد از آنها در صنعت بتن یک راه حل امکان پذیر در استعمال این مواد می باشد. پلاستیک های بازیافتی می توانند به عنوان سنگدانه در بتن استفاده شوند. با این وجود، تاکید این موضوع مهم است که استفاده مجدد از مواد بازیافتی به علت هزینه بالای حمل و نقل و تاثیر قیمت کل تمام شده محصولات، هنوز صرفه اقتصادی ندارد. علاوه بر این، مهم است که از هزینه های دیگر نیز غفلت نشود، که مستقیما به نوع بازیافت به ویژه، لزوم به جمع آوری گازهای متصاعد شده در اثر سوزاندن مواد و حضور عنصرهای سمی و ناپاک، مرتبط می باشد.
هدف از انجام پژوهش
در عصر حاضر وجود مواد زاید حاصل از فرایندهای مختلف فیزیكی وشیمیایی یكی از معضلات مهم كشورهای صنعتی و در حال توسعه می باشد به طوری كه تحقیقات وسیعی برای روش های بازیافت یا دفع آنها به منظور به حداقل رساندن آسیبهای وارده به محیط زیست در حال انجام می باشد . در این راستا محققان ساختمان نیز همانند سایر صنایع تولیدی و بازیافتی، در جهت استحصال مواد و مصالح زاید به پیشرفتهایی نایل شده اند كه از آن جمله میتوان استفاده از لاستیكهای مستعمل در بتن را نام برد.
محققان زیادی استفاده از لاستیک های فرسوده در اندازه های مختلف را مورد مطالعه و بررسی قرار داده اند. لاستیک های فرسوده را می توان به صورت خرد شده یا به صورت پودر در بتن بکار برد.
در سالهای اخیر یکی از مهمترین تحقیقاتی که بر روی خواص سخت شده بتن ها آغاز شده، بررسی خواص بتن های سخت شده تحت درجه حرارت بالا می باشد. به طور کلی میتوان گفت که مقاومت بتن مخصوصا در فشار اساسا بستگی به کیفیت خمیر و دانه ها، سختی و چگالی دانه ها دارد. جایگزینی دانه های چگال و سخت با دانه های نرم تر لاستیک با چگالی کمتر به عنوان متمرکز کننده تنش عمل خواهد کرد و باعث ایجاد میکرو ترک در بتن می شود. بنابراین استفاده از اینگونه مواد به صورت پودر تا جایی که مشکلاتی در چسبندگی خمیر و مقاومت ایجاد نکند ، مناسب می باشد. به نظر می رسد وجود فضاهای خالی و ضرایب انبساط حرارتی اجزای تشکیل دهنده بتن از جمله مهمترین پارامترهای موثر برخواص سخت شده بتن پس از قرارگیری در حرارت های بالا می باشد. در این بررسی تاثیر نسبت آب به سیمان و اندازه بزرگترین بعد سنگدانه و همچنین استفاده از پودر لاستیک ضایعاتی بر خواص بتن خود تراکم تحت حرارت های بالا مورد بررسی قرار گرفته و رفتار این نوع بتن در قیاس با بتن خود تراکم معمولی مورد تحلیل قرار خواهد گرفت تا میزان درصد بهینه خرده لاستیک جایگزینی به جای پودر سنگ در بتن خود تراکم حاصل گردد.
فرضیات مسئله
در حرارت های بالا ، تخلخل ناشی از ذوب خرده لاستیک باعث تشدید حفرات می شود.
فعالیت معنادار در ماتریس خمیر سیمان در حرارت بالا در نظر گرفته نمی شود.
آهنگ افزایش و کاهش درجه حرارت بتن ها ، یکنواخت ویکسان در نظر گرفته می شود.
جنس مصالح مورد استفاده در مخلوط های مختلف ، ثابت در نظر گرفته می شود.
توزیع پودر لاستیک در بتن ، یکنواخت در نظر گرفته می شود.
[1]-Self Compacting Concrete(SCC)