وبلاگ

توضیح وبلاگ من

پابان نامه ارشد :آنالیز و مدلسازی انتقال حرارت نانوکامپوزیت چند لایه ای سیلیکاته پرکاربرد در سپرهای حرارتی

 
تاریخ: 05-11-99
نویسنده: نویسنده محمدی

در این بخش یک نگاه کلی به روش‌های افزودن و بهینه کردن خواص تأخیر اشتعال در کامپوزیت های تقویت شده با الیاف خواهیم داشت. روش های مورد استفاده فوق العاده متنوع و متفاوت می باشند. افزودنی های ساده آلیاژ شونده با ماتریس پلیمری یا پوشش های مقاوم در حرارت[5]، روش‌های شیمیایی اصلاح ماتریس کامپوزیت‌هایی که سطح آنها با گرما به instumescence تبدیل می‌شود. همچنین روش هایی برای بهبود پایداری حرارتی و مقاومت در برابر آتش الیاف آلی مورد استفاده در کامپوزیت نیز مشخص شده است. روش معمول برای کاهش اشتعال پذیری کامپوزیت، افزودن پرکننده داخلی (مثل تالک، سیلیکا) یا پرکننده فعال حرارتی (مثل اکسیدهای هیدراته[6]) به ماتریس پلیمری است. انواع پرکننده ها مکانیسم تأخیر اشتعال آنها و راندمان آنها زمانی که در مواد کامپوزیتی استفاده می شود شرح داده می شود بعد از آن به اصلاح ساختار شیمیایی پلیمیرهای آلی جهت بهبود مقاومت اشتعال پذیری با تکیه بر مکانیسم های تأخیر اشتعال و خواص برهمکنش شعله در پلیمرهای فسفره، کلره و برمه توضیح داده خواهد شد. برخی روش های گفته شده جهت تأخیر اشتعال صدها سال جهت کاهش اشتعال در پارچه لباس و چوب و اخیراً در پلیمرها و کامپوزیت‌های پلیمری کاربرد دارد. دیگر روش‌ها در 10 الی 50 سال گذشته ارائه شده است. چندین روش جدید نیز برای کاهش اشتعال‌پذیری در حال تکمیل و بهبود است و چشم انداز بزرگی جهت تأخیر اشتعال کامپوزیت ها را پیشنهاد می کنند. دیگر روش های موجود عبارتند از پلیمریزاسیون پیوندی اجزای تأخیردهنده اشتعال به پلیمر آلی و پلیمرهای با ساختار غیر معدنی غیر قابل اشتعال نیز از این روش‌ها است. چرخه اساسی اشتعال کامپوزیت‌های پلیمری به صورت شماتیک در شکل ‏2‑1 نشان داده شده است.

 

شکل ‏2‑1: چرخه اشتعال کامپوزیت‌های پلیمری در آتش.علامت ضربدر مشخص کننده مراحلی از چرخه است که تاخیر دهنده اشتعال چرخه را بر هم میزند[1]

 

دمای حاصل از تجزیه وابسته به طبیعت شیمیایی پلیمر و اتمسفر آتش است اما به صورت عمده این دما در محدوده 500-300 درجه سانتی گراد برای بیشتر پلیمرها و الیاف آلی مورد استفاده در کامپوزیت ها می باشد. همانطور که گفته شده گازهای حاصل از تجزیه از درون کامپوزیت به شعله جریان می یابد. در اینجا مواد ناپایدار قابل اشتعال با اکسیژن واکنش می دهد و به مقدار زیاد رادیکال فعال OH و H را تولید می کند. این رادیکال ها نقش مهمی در واکنش های زنجیره ای منجر به تجزیه و سوختن زنجیره ای پلیمرها و دیگر سوخت های آلی بازی می کند. واکنش های پیرولیز در شعله به صورت ساده به وسیله نهاد O2-H2 توصیف می شود:

 

 

 

(‏2‑1)  

 

 

 

(‏2‑2)  

واکنش گرمازای اصلی که بیشترین انرژی گرمایی در شعله را تولید می کند عبارتست از:

 

 

 

(‏2‑3)  

رادیکال های H تولید شده در واکنش(‏2‑2) و (‏2‑3) به واکنش(‏2‑1) برگردانده می شود[7] بنابراین واکنش اشتعال باعث یک فرایند خود انتشار متوالی یا واکنش زنجیره ای شده که تا زمانی که اکسیژن مورد نیاز لازم موجود باشد ادامه خواهد یافت. گرمای تولید شده دمای ناحیه اشتعال را بالا می برد و این عامل باعث افزایش شتاب نرخ تجزیه کامپوزیت خواهد شد. بسیاری از پلیمرها مثل پلی استرها، ونیل استرها و اپوکس ها با مقدار زیادی گازهای قابل اشتعال را آن می کنند که خود عاملی افزایش مقدار سوخت شعله خواهد شد[8]. در این مواد تا زمان تخریب کامل ماتریس پلیمر اشتعال ادامه می یابد. اشتعال پذیری مواد کامپوزیتی به وسیله توقف یا کاهش واکنش های شاخه ای شدن زنجیردر مراحل(‏2‑1) و (‏2‑2) در چرخه احتراق کاهش می یابد. تأخیر دهنده های اشتعال پلیمرها به سه روش چرخه احتراق را قطع می کنند:

 

1- اصلاح فرایند تخریب حرارتی برای کاهش میزان و یا انواع گازهای قابل اشتعال

 

2- تولید گازهای تجزیه که شعله و آتش را سریعاً سرد می کند[9] . این عمل به وسیله حذف رادیکال های H و OH انجام می گیرد.

 

دانلود مقاله و پایان نامه

 

 

3- کاهش دمای مواد به وسیله اصلاح خصوصیات هدایت حرارتی و یا گرمای ویژه (این روش می تواند به تنهایی یا با دیگر روش ها به کار برده شود.)

 

به صورت کلی اغلب پلیمرهای تأخیر دهنده اشتعال به دو دسته فاز متراکم شونده و فاز گازی فعال تقسیم می شوند. این تقسیم بندی بستگی به این دارد که آیا در آنها مکانیسم تجزیه پلیمر مختل می شود یا احتراق در شعله. زمانی پلیمر در دسته فاز متراکم قرار می گیرد که در حالت جامد یا مذاب باشند. دسته فاز متراکم خود شامل چندین مکانیسم برای تأخیر اشتعال است که عبارتند از:

 

1- رقیق کردن مقدار ماده آلی قابل اشتعال به وسیله افزودن ذرات پرکننده داخلی.

 

2- کاهش دمای کامپوزیت به وسیله افزودن پر کننده هایی که به عنوان جاذب حرارتی[10] عمل می کنند.

 

3- کاهش دما به وسیله افزودن پر کننده هایی که به صورت گرماگیر تجزیه شده و محصولاتی مانند آب یا دیگر محصولات غیر قابل اشتعال با ظرفیت حرارتی ویژه بالا تولید می کنند.

 

4- کاهش میزان نرخ رهایش حرارت به وسیله بکارگیری پلیمرهایی که توسط واکنش‌های گرماگیر تجزیه می‌شوند.

 

5- افزایش آروماتیسیته[11] ماتریس پلیمری به منظور اینکه به یک سطح و لایه عایق فضای کربنی[12] تجزیه شود که هدایت حرارتی درون کامپوزیت را کاهش می دهد و انتشار گازهای قابل اشتعال را کاهش دهد.

 

کامپوزیت های پلیمری که جزء تأخیر دهنده های اشتعال از نوع فاز گاز[13] می باشند، به وسیله ممانعت از واکنش اشتعال عمل می‌کنند. در نتیجه هم کاهش انتشار شعله و هم بازگشت مقدار حرارت از سوی شعله به ماده را در این نوع مشاهده می‌شود. مکانیسم‌های موجود در نوع فاز گاز که به صورت گسترده جهت تأخیر اشتعال به کار گرفته شده است معمولاً رهایش رادیکال های بر پایه برومین، کلرین و فسفره را خواهند داشت که باعث اختتام واکنش های اشتعال گرمازا از طریق حذف رادیکال های H و OH از شعله خواهند شد. یکی دیگر از مکانیزم های معمول این دسته رهایش بخارات غیر قابل اشتعال برای رقیق کردن غلظت گازهای H و OH در شعله است. همچنین باعث کاهش دما نیز خواهد شد. در حالی که بسیاری از تأخیر دهنده های اشتعال تنها با یکی از مکانیسم های فاز متراکم و یا فاز گاز عمل می کنند، تأخیر دهنده هایی بیشترین تأثیر را دارند که از هر دو مکانیسم فازها در یک زمان واحد استفاده می کنند.

 

2-1-2تأخیر دهنده‌های اشتعال برای کامپوزیت‌ها

 

مواد تأخیر دهنده اشتعال متنوعی برای پلیمرها و کامپوزیت های پلیمری ارائه شده است. در حدود 200-150 آمیزه و ماده مختلف برای استفاده وجود دارد. [2-7]

 

تأخیر دهنده‌های اشتعال یکی از بزرگترین گروه از افزودنی‌هاست که در پلیمرها استفاده می شود. این مواد در حدود 27% از بازار افزودنی پلاستیک را به خود اختصاص داده است. رتبه بعدی متعلق به پایدار کننده حرارتی (6/15%) آنتی اکسیان ها (6/7%) روان کننده ها (6%) و پایدار کننده اشعه ماوراء بنفش (5%) می باشد. مواد تأخیر دهنده اشتعال با پلیمر طی فرایند آلیاژ می شوند اما به صورت شیمیایی با پلیمر واکنش نمی دهند. ترکیب شیمیایی بسیاری از آنها بر اساس عناصر آنتیموان، آلومینیوم، بروم، فسفر، برومین، کلرین است که این مواد تأخیر اشتعال درصد زیادی را تأمین می کنند. به صورت تخمینی در حدود 90% از مواد افزودنی بر اساس این عناصر هستند و به شکل اکسیدهای آنیتموان، آلومینیوم سه آبه و اکسیدهای برون کاربرد دارند. به مقدار کمتری نیز افزودنی هایی شامل باریوم، روی، تین، آهن، مولیبدنیوم یا گوگرد وجود دارند. بسیاری از افزودنی ها شامل نمک های فلزی هیدراته هستند که به صورت گرماگیر در شعله تجزیه می شوند و در نتیجه میزان و نرخ رهایش حرارت کلی پلیمر را کاهش می دهند. برخی دیگر از عناصر افزودنی نیز در هنگام تجزیه بخار آب آزاد می کنند طی فرایند تجزیه و این بخار آب باعث رقیق شدن و کاهش غلظت گازهای قابل اشتعال رهایش شده خواهند شد. کامپوندهای واکنشی نیز با زرین در هنگام فرایند پلیمریزه می شوند و دارای ساختار شبکه ای مولکولی یکپارچه شوند. تأخیر دهنده های واکنشی اشتعال به صورت اساسی بر پایه هالوژن بروم و کلر، فسفره و عناصر معدنی و ملامین هستند. در حال حاضر بروم و کلر، تأخیر دهنده های معمولی هستند زیرا قدرت زیادی در یکباره سرد کردن شعله دارند. کامپوندهای هالوژن به وسیله رهاسازی اتم های برومین و کلرین فعال به درون شعله در برابر اشتعال پذیری مقاومت می کنند. این اتم ها واکنش اکسیداسیون احتراق گازهای اشتعال پذیر را متوقف می کنند. اگرچه در حال حاضر از سوی مقامات دولتی و طرفداران طبیعت تصمیماتی جهت استفاده از تأخیر دهنده های اشتعال غیر هالوژن گرفته شده است (این ترکیبات به طبیعت لطمه وارد می کنند). ترکیبات فسفره یکی دیگر از ترکیبات مؤثر در ارتباط با اشتعال است این ترکیبات میزان گازهای قابل احتراق حاصل از تجزیه را به وسیله افزایش تشکیل ذغال کاهش می دهند. انتخاب تأخیر دهنده اشتعال برای کامپوزیت پلیمری چندین عامل و فاکتور بستگی دارد که شامل هزینه، سازگاری شیمیایی میان تأخیر دهنده اشتعال و پلیمر میزبان دمای تجزیه ماده و وزن. بسیاری از پرکننده های تأخیر دهنده اشتعال خواص مکانیکی پلیمرها را کاهش می دهند. البته می توان به وسیله اصلاح سطح پرکننده این تأثیرات منفی را کاهش داد و بر همکنش میان ذرات و ماتریس پلیمری را بهبود بخشید. برخی مواد پر کننده با وجودی که اشتعال پذیری را کاهش می دهند مقدار دود و دودهای سمی را با تجزیه ماده افزایش می دهند. به خاطر همین دلایل سعی بر این است که ترکیبی از تأخیر دهنده های اشتعال در کامپوزیت های پلیمری استفاده شود تا میزان مقاومت در برابر اشتعال پذیری افزایش یابد و در عین حال تأثیرات مضرب و منفی و مضر روی ویژگی ها و خواص مکانیکی، دود و سمیت به کمترین مقدار ممکن برسد. پرکننده ها عناصر غیر فعال معدنی هستند که به پلیمر طی مراحل پایانی فرایند افزوده می شود تا اشتعال پذیری محصول نهایی کاهش یابد. قطر ذرات پرکننده زیر 10 میکرومتر است و اغلب در محدوده میکرون است. ذرات به زرین مایع آلیاژ می شود و به صورت یکنواخت در آن پراکنده می شود. بیشتر پلیمرها نیاز به مقدار زیادی پرکننده جهت نشان دادن بهبود محسوس در مقاومت اشتعال پذیری شان دارند. مقدار حجمی کمینه معمولاً در حدود 20% و مقدار متوسط در حدود 50% تا 60% است. پرکننده باید با پلیمر سازگار باشد. در غیر این صورت خواص مکانیکی و دوام و بقای محیطی ماده از بین رفته و کاهش یابد. پرکننده ها می توانند اثرات مخرب بر روی خواص بگذارند این اثرات شامل افزایش و سیکوزیتید، کاهش زمان ژل شدگی مذاب پلیمری که باعث مشکل شدن فرایند گردد، می شود. بیشتر پرکننده ها به صورت تدریجی با تحت مجاورت قرار گرفتن رطوبت دچار هیدرولیز شده و از بین می روند و این عامل جهت کاهش خاصیت تأخیر اشتعال آنها خواهد شد. با وجود این مشکلات پرکننده ها اغلب به دلیل هزینه پایین آنها افزودن آسان آنها به پلیمر و قابلیت مقاومت اشتعال پلیمر استفاده می شوند. این نکته قابل اهمیت است که پرکننده ها به ندرت به تنهایی استفاده می شود اما در مقابل به صورت ترکیبی با تأخیر دهنده های اشتعال دیگر (مثل ارگانوهالوژن ها یا ارگانوفسفره ها) برای رسیدن به مقدار زیاد مقاومت در برابر اشتعال استفاده می شود. ما دو نوع پرکننده تأخیر دهنده اشتعال داریم: خنثی و فعال که بر اساس نوع فعالیت مشخص می شود:


فرم در حال بارگذاری ...

« دانلود پایان نامه ارشد : تجزیه و تحلیل اقتصادی کشاورزی برنج در استان مازندراندانلود پابان نامه ارشد : انتخاب تأمین کنندگان توسط مدل سازی ریاضی چند هدفه »
 
مداحی های محرم