فرآوری نیمه جامد یک فرایند تهیه فلزات و آلیاژها است که در چند سال اخیر توسعه سریعی داشته است. در این فرایند آلیاژ مورد نظر ابتدا تحت شرایط کنترل شدهای ذوب شده، سپس در دامنه انجماد آن به مذاب تنش برشی وارد می شود. اعمال تنش برشی در منطقه دو فازی منجر به تخریب ساختار شاخهای(دندریتی[1]) می شود و در نتیجه میتوان یک مخلوط مایع-جامد[2] را به قطعهای با ساختار غیر دندریتی تبدیل نمود [1].
به عنوان یک تعریف ساده، ریزساختار نیمهجامد شامل فازهای جامد اولیهای است که دارای مورفولوژی غیردندریتی و تقریباً کروی بوده و توسط زمینه یوتکتیکی احاطه شده است [2]. از ویژگیهای مهم فرایندهای شكلدهی فلزات در حالت نیمهجامد میتوان به تخلخل كمتر و همچنین قابلیت تولید قطعات با اشکال پیچیده اشاره کرد. همانطور که در شکل 1‑1 نشان داده شدهاست، این فرایند از دیدگاه محدوده دمای کاری در حد میانی دو فرایند ریختهگری و آهنگری قرار دارد. به بیان دیگر، دمای کاری در این فرایند پایینتر از ریختهگری و بالاتر از آهنگری است.
از معایب عمده ریختهگری میتوان به موارد زیر اشاره کرد[3]:
1- وجود حفرههای گازی بدلیل حلالیت بالای گاز در مذاب با دمای بالا
2- ایجاد حفرههای انقباضی، یعنی تشکیل شاخههایی از فلز جامد در زمینهای از فلز مذاب موسوم به دندریت. این شاخه ها باعث بالا رفتن گرانروی مذاب شده و مانع تغذیه و پر شدن حفره ها می شود.
هر دو عامل فوق باعث پایین آمدن كیفیت قطعه تولیدی می شود.
آهنگری هم دارای محدودیتهایی به شرح زیر است [3]:
1-عدم توانایی تولید قطعات پیچیده
2-رویهم افتادگی[1] دیواره قطعات
3-نیاز به پرسهایی با تناژ بالا و در نتیجه افزایش هزینه تولید
فرایندهای شکلدهی در حالت نیمهجامد در واقع به منظور برطرفکردن محدودیتهای دو روش اشاره شده میباشد. تولید قطعات با این فرایند بخاطر خواص مفیدی که از خود نشان دادهاند از حدود 30 سال پیش مورد توجه قرار گرفته است [4].
1-1-1- روش های تولید مخلوط مذاب و جامد
ماده اولیه ورودی فرایند و روش تهیه آن و نیز چگونگی شکلدهی این مواد، مهمترین مشخصههای کلیدی به منظور شناخت روشهای نیمهجامد هستند. در این فرایندها، مخلوطی متشکل از ذرات جامد غیردندریتی پخش شده در فاز مذاب فلزی به عنوان ماده شروع کننده فرایند مورد استفاده قرار میگیرد.
به طور کلی روشهای تولید دوغاب نیمهجامد به دو دسته تلاطمی و غیر تلاطمی (حرارتی) تقسیم بندی میشوند. روشهای همزدن مکانیکی[1]، همزدن مغناطیسی[2]، سطح شیبدار[3]، عملیات فراصوتی[4]، غلتک سرد کننده و گلولههای نسوز را میتوان از انواع روشهای تلاطمی برشمرد. روشهای اسپری کردن[5]، رئوکست نیمهجامد[6] و رئوکست جدید[7] از انواع روشهای غیرتلاطمی میباشند.
با توجه به اینکه در پایان نامه حاضر از روش سطح شیبدار خنککننده استفاده شده است، از این رو، توضیح جامعتری از این روش در ادامه خواهد آمد. به کارگیری سطح شیبدار خنككننده یكی از سادهترین و در عین حال جالبترین روشهای ابداعی برای تولید مخلوط مذاب-جامد و در نهایت تولید ریزساختار کروی است. توضیح در مورد این روش به این دلیل كه دقیقاً مفهوم سرعت تغییر شكل زاویهای (نرخ برش) و نیز مفهوم قانون لزجت نیوتن را در خود جای داده است، لازم و جالب توجه است. این روش یکی از روشهای جدید تولید قطعات از طریق فرایند نیمه جامد بوده و به منظور تولید شمشهای تیکسوکست شده و قطعات رئوکست شده کاربرد دارد [4].
شکل 1‑2 تصویر طرحوار این روش را نشان میدهد. ریختهگری سطح شیبدار شامل ذوب کردن آلیاژ در یک كوره مناسب نظیر کوره القایی و سپس سرد کردن آهسته آن تا دمای معین، کمی بالای خط مذاب آلیاژ، است. به منظور تامین کسر جامد مشخص در انتهای سطح شیبدار، دمای بارریزی تعیین می شود. مذاب با حداقل دمای فوق گداز روی سطح شیبداری که معمولاً از جنس همان فلز مذاب است، ریخته می شود. سطح شیبدار معمولاً نسبت به خط افق زاویهای بین 30 تا º60 دارد. گاهی اوقات سطح شیبدار بوسیله گردش آب در قسمت زیرین آن، خنك میشود. توجه به این مورد ضروری است كه جریان بارریزی باید آرام باشد تا موجب لغزش لایه های آلیاژی روی یکدیگر شود. مذابی كه به انتهای سطح شیبدار میرسد به شکل مخلوطی از مذاب و جامد با ساختار غیردندریتی میباشد [5].
در روش سطح شیبدار خنككننده، تنش برشی بر اثر شیب سطح و نیروی وزن سیال تامین میشود. با تداوم اعمال تنش برشی، شاخههای
بوجود آمده در مذاب نیمهجامد شكسته می شود و به تدریج كروی شكل میگردد. زاویه و طول سطح شیبدار، دمای بارریزی، نرخ بارریزی، جنس و دمای قالب، ارتفاع نازل تا سطح و میزان زبری سطح از عوامل مهم در روش سطح شیبدار میباشند. با افزایش زاویه سطح خنککننده، میزان نرخ برش و در نتیجه تلاطم ایجاد شده در مخلوط نیمهجامد افزایش مییابد. در مقابل، هر چه زاویه کمتر باشد مدت زمان سیلان ماده نیمهجامد بر روی سطح بیشتر می شود و در نتیجه احتمال دستیابی به ساختاری با درصد کرویت بالاتر و توزیع یکنواختتر، بیشتر خواهد بود. بعلاوه، طول سطح شیبدار بر مدت زمان اعمال برش تاثیر گذار است. در نتیجه، برای تعیین شرایط بهینه سطح شیبدار از نظر میزان و مدت زمان اعمال برش، باید تاثیر متقابل زاویه و طول سطح شیبدار در نظر گرفته شود. دمای بارریزی نیز دارای یک حد بهینه است که با توجه به طول سطح شیبدار و نیز قدرت خنککنندگی سطح تغییر می کند [6].
2-1-1- فرایندهای تولید قطعه از مخلوط مذاب و جامد
فرایند تولید نیمهجامد از مجموع دو فرایند ریختهگری و شکلدادن تشکیل شده است. در مرحله ریختهگری، آلیاژ مذاب با دامنه انجماد وسیع یا نسبتاً وسیع آماده می شود و طی سرد شدن درمحدوده دو فازی جامد-مذاب تحت تلاطم قرار میگیرد. در این حالت، مخلوط یکنواختی از مذاب و جامد حاصل می شود. سپس مخلوط فوق به کمک یکی از روشهای شکلدادن فلزات مانند اکستروژن یا دایکاست به شکل مورد نظر تبدیل می شود. از آنجا که این مخلوط در مقایسه با روشهای شکلدادن فلزات جامد از مقاومت کمتری برخوردار است، از این رو، نیاز به نیروی شکلدهی کمتری دارد. فرایند تولید در حالت نیمهجامد به دو روش مستقیم یا رئوکستینگ[1] یعنی ریختهگری با مخلوط مذاب و جامد و روش غیرمستقیم یا تیکسوفورمینگ[2] یعنی شکلدهی با شمش نیمهجامد تقسیم بندی می کنند. فرایند شکلدهی با شمش نیمهجامد نیز خود به دو دسته آهنگری با شمش نیمهجامد[3] و ریختهگری با شمش نیمهجامد[4] تقسیم میشود.
تیكسوفورمینگ اصطلاحی است كه به فرایند تولید یک قطعه از شمشی كه به صورت جزئی ذوب گردیده و به داخل قالب تزریق میشود، اطلاق میگردد. از این فرایند برای تولید قطعات نزدیک به شكل نهایی[5] استفاده میشود. شمش مخصوص كه به صورت نیمهجامد است (به صورت جزئی ذوب گردیده)، دارای ذرات جامد با ساختار كروی شكل میباشد. در این روش پس از تهیه مذاب و اعمال تنش برشی در ناحیه دو فازی، مخلوط جامد- مذاب را به صورت شمش ریختهگری میکنند. سپس این شمشها تا دمای محیط سرد و به اندازه های دلخواه بریده میشوند. در عین حال، در این روش قبل از شکلدهی، شمشها را دوباره تا دمای نیمهجامد گرم و با اعمال فشار (از طریق تزریق در قالب یا آهنگری) شکل میدهند. اگر فرایند تولید، شامل تزریق شمش مخصوص نیمه جامدی با کسر جامد پایین باشد به این فرایند ریختهگری با شمش نیمهجامد میگویند. در مقابل، اگر در فرایند تولید قطعه از شمشی با کسر جامد بالا استفاده شود، به این فرایند آهنگری با شمش نیمهجامد میگویند. تصویر طرحوار این تعاریف در شکل 1‑3 آورده شده است.
فرایند شکلدهی با شمش نیمهجامد شامل دو مرحله میباشد. مرحله اول که مهمتر است، حرارت دادن یكنواخت و كنترل شده شمش مخصوص میباشد. هدف این مرحله ذوب نمودن یكنواخت شمش مخصوص و تشكیل مخلوط مذاب و جامد همگن با كسر جامد مطلوب میباشد [7]. مرحله دوم، انتقال شمش به دستگاه تزریق ریختهگری با شمش نیمهجامد یا به داخل قالب میباشد. بعد از مرحله انجماد كامل مخلوط مذاب-جامد در قالب و تولید قطعه نهایی، این قطعه از قالب بیرون میآید و راهی مراحل بعدی تولید مانند ماشینكاری میشود [7].
برای این كه بتوان به یک شمش مخصوص در حالت نیمه جامد با خصوصیات فوق دست پیدا کرد باید پارامترهایی مانند دمای نگهداری، یكنواختی و همگنی در حرارت دادن مجدد و زمان اعمال این عملیات به شمش مخصوص به دقت تحت كنترل قرار گیرند. دمای نگهداری شمش مخصوص یا مخلوط مذاب-جامد تعیینكننده مقدار كسر جامد آن است. حرارت دهی بیش از این دما، باعث بالا رفتن دمای شمش مخصوص و به دنبال آن، پایین آمدن مقدار كسر جامد در مخلوط مذاب و جامد میشود كه نتیجه آن ناپایداری ساختار شكل جامد شمش مخصوص خواهد بود و باعث بروز مشكلات در حمل و نقل آن می شود. حرارت دادن در دمای كمتر از دمای مورد نظر باعث عدم ذوب شدن كامل شمش مخصوص و در نتیجه یكی شدن و به هم آمیختن و تشكیل فاز چند وجهی در استحاله یوتکتیکی می شود [7]. علاوه بر كنترل دما در مرحله حرارت دهی مجدد، یكنواختی و همگنی دما در سراسر شمش مخصوص نیز بسیار حائز اهمیت است، زیرا عدم یكنواختی و همگنی درجه حرارت باعث نوسان در مقدار كسر جامد و خصوصیات مخلوط مذاب-جامد می شود. همچنین این نوسانات علاوه بر داشتن تاثیر منفی بر روی خواص قطعه نهایی، باعث می شود که هنگام تزریق ماده به داخل قالب، دو فاز كاملاً مجزای جامد و مذاب به وجود آید كه اثرات منفی آن كاملاً واضح است. این عدم یكنواختی همچنین می تواند باعث ناپایداری شكل ظاهری جامد آن شود و مشكلات حمل و نقل بعدی را بوجود آورد. نمونهای از اثرات حرارتدهی ناهمگن كه به مشكل پافیلی شدن[1] معروف است، در شکل 1‑4 مشاهده میشود [7]. زمان حرارتدهی نیز باید به دقت كنترل شود و بهینهسازی شود. زمان حرارتدهی بالا باعث بزرگشدن اندازه ذرات جامد موجود در مخلوط مذاب و جامد می شود. در مقابل، زمان حرارت دهی پایین باعث عدم كروی گردیدن كامل ذرات موجود در مخلوط مذاب و جامد میشود كه این امر باعث بوجود آمدن اثرات منفی بر روی خواص مخلوط مذاب و جامد می شود و در نتیجه باعث بروز مشكلاتی در پر شدن قالب هنگام تزریق می شود [8].
[1] -Foot Elephant
[1] -Rheocasting
[2] -ThixoForming
[3] -ThixoForging
[4] -ThixoCasting
[5] -Near Net Shaping
[1] -Mechanical Stirring
[2] -ElectroMagnetic Stirring
[3] -Cooling Slope
[4] -Ultrasonic Treatment
[5] -Spray Deposition Process
[6] -SemiSolid Rheocast
[7] -New Rheocast
[1] -Lapping
[1] -Dendritic
[2] -Slurry
فرم در حال بارگذاری ...