وبلاگ

توضیح وبلاگ من

پایان نامه ارشد: تحلیل ارتعاشی یک ورق مرکب لایه‌ لایه به کمک تئوری دومتغیره‌ پالوده شده به روش المان‌های محدود سلسله مراتبی

 
تاریخ: 05-11-99
نویسنده: نویسنده محمدی


استفاده از مواد مرکب در سازه‌های هوافضا، خودروسازی و دریانوردی کاربرد گسترده‌ای دارد. به‌طورکلی مواد مرکب از دو بخش رشته و زمینه تشکیل می‌شود. رشته‌ها معمولا سخت‌تر و قوی‌تر از زمینه هستند و بار اصلی در ماده مرکب را تحمل می‌کنند و زمینه به عنوان محافظ رشته‌ها و هم‌چنین وسیله توزیع بار است. زمینه و رشته‌ها در دما و فشار کنترل شده‌ای به یکدیگر می‌چسبند و ماده مرکب را به وجود می‌آورند که از نظر ویژگی‌های مکانیکی از هر دو ماده متفاوت است. مواد مرکب را می‌توان برای استحکام، سختی، خستگی و مقاومت در برابر گرما و بخار با تغییردر جهت الیاف بهینه‌سازی کرد. ویژگی دیگر مواد مرکب نسبت به مواد معمولی، نسبت استحکام به وزن بالای آن‌ ها است. اجزای سازه‌ای نظیر تیر و ورق از طریق رویهم‌گذاری لایه‌ها در زاویه‌های مختلف به‌منظور دستیابی به ویژگی‌های مطلوب ایجاد می‌شوند.
پدیده تشدید در اجزای سازه و سیستم‌های مکانیکی، عمر تجهیزات را کم می‌کند و حتی باعث شکست کامل و زودرس می‌گردد. تشدید، تحت تاثیر ویژگی‌های جرم و سختی سازه می‌باشد. آنالیز مودال، مودهای ارتعاشی و فرکانس‌های آن را به‌دست می‌آورد. این روش برای سازه‌های ساده قابل استفاده است. اما وقتی‌که سازه پیچیده می‌شود یا تحت بارگذاری‌های پیچیده قرار می‌گیرد، از روش تحلیل المان محدود برای به‌دست آوردن فرکانس‌های طبیعی و مودهای سیستم استفاده می‌گردد.
1-1- تاریخچه‌ای به روش‌های حل مسایل ارتعاش آزاد ورق‌ها
شروع مطالعه رفتار ارتعاشی ورق‌ها به انتهای دهه 1800 باز می‌گردد، زمانی که ریلی روش معروف خود را برای بررسی ارتعاش آزاد سازه‌ها ارائه داد. [3] پس از آن ریتز در سال 1909 روش ریلی را با در نظر‌گرفتن مجموعه‌ای از تابع‌های شکل آزمون بهبود بخشید، که هر‌کدام ضرایب دامنه مستقلی دارند. به این ترتیب روش ریلی-ریتز به یکی از روش‌های تقریبی پرکاربرد در زمینه بررسی رفتار ارتعاش سازه‌ها تبدیل شد. پس از آن، تحقیقات گسترده‌ای در زمینه ارتعاش ورق‌هایی با شکل‌های مختلف، شرایط مرزی و بارگذاری متفاوت صورت گرفت. بخش عمده‌ای از این مطالعه‌ها به ورق‌های نازک محدود می‌شود که در آن از اثر تغییر شکل‌های برشی صرف‌ نظر شده است. [8]
بر خلاف ورق‌های نازک، اثر تغییر شکل‌های برشی در ورق‌های ضخیم قابل ملاحظه است. صرف نظر‌کردن از اثر‌های برشی در این نوع ورق‌ها ، منجر به افزایش قابل ملاحظه مقدار فرکانس‌های ارتعاشی در جهت عدم اطمینان می‌شود. از این رو تئوری‌های تغییر شکل برشی مرتبه اول[1] مانند تئوری ریزنر–‌‌میندلین و دیگر تئوری‌های تغییر شکل برشی مرتبه‌های بالاتر[2] توسط محققین مختلف برای بررسی رفتار ارتعاش ورق‌ها مورد استفاده قرار گرفته است.
میندلین و همکارانش، ارتعاش ورق‌های مستطیلی ضخیم با شرایط مرزی چهار طرف مفصل و شرایط لوی را بررسی نمودند و حل تحلیلی آن‌ ها را ارائه دادند. آن‌ ها به این نتیجه رسیدند، که در ورق های چهار طرف مفصل سه دسته مود مستقل قابل حصول است. هم‌چنین در‌هم‌کنش سایر مودها برای ورقی با یک جفت مرز آزاد و جفت دیگر مفصلی مورد مطالعه قرار گرفت.
نور [9] در سال 1973 به بررسی ارتعاش آزاد ورق‌های مرکب لایه‌لایه‌ پرداخت. وی نتیجه‌های حاصل از تئوری کلاسیک ورق لایه‌لایه[3]،

دانلود مقاله و پایان نامه

 تئوری میندلین و تئوری الاستیسیته سه‌بعدی را با یکدیگر مقایسه نمود وبه این نتیجه رسید، که تئوری کلاسیک ورق برای تخمین رفتار ارتعاش ورق‌هایی با درجه عمودسانگردی بالا و نسبت ضخامت به طول بیشتر از 1/0 مناسب نیست. این در‌حالی‌است که نتایج تئوری میندلین، برای برآورد فرکانس‌های ارتعاش پایین در ورق‌های نسبتا ضخیم لایه‌لایه‌ای با نسبت ضخامت به طول کمتر از2/0 رضایت‌بخش است.

روش ریلی-ریتز در سال 1980 توسط داو و رانائل [10] برای ارتعاش آزاد ورق میندلین به‌کار برده شد. ایشان از تابع‌های تیر تیموشینکوف به عنوان تابع‌های شکل استفاده نمودند و ورق‌های مربعی با پنج ترکیب مختلف از شرایط مرزی را بررسی کردند. ایشان هم‌چنین این روش را برای حالتی بسط دادند که ورق تحت تنش‌های درون-صفحه‌ای است. براساس این روش لیو و همکارانش ارتعاش ورق‌های دایره‌ای و حلقوی شکل را برای شرایط مرزی متفاوت بررسی کردند. [11] این روش هم‌چنین در مطالعه ارتعاش ورق‌های متوازی الاضلاع و مثلثی با شرایط مرزی مختلف مورد توجه قرار گرفت.
تعداد زیادی از محققین، از روش المان محدود در بررسی ارتعاش آزاد ورق‌ها بهره جستند. به عنوان مثال راک و هینتون ][59 ، المان‌های خمشی چهار ضلعی هم پارامتری را به منظور تحلیل ارتعاش ورق‌های ضخیم ونازک معرفی نمودند. چونگ و کواک [12] ، المان‌های حلقوی و قطاع شکل را برای مطالعه ارتعاش آزاد ورق‌های لایه‌لایه‌ای ضخیم با مرزهای منحنی شکل توسعه دادند. ردی و کوپاسامی[13]  ، روش المان محدودی را براساس تئوری الاستیسیته سه بعدی برای ارتعاش آزاد ورق‌های لایه‌لایه‌‌ای ناهمسانگرد مستطیلی ارائه داد.
روش نوار محدود [4] FSMنیز به عنوان یکی از روش‌های پرکاربرد در زمینه حل مسایل مقادیر ویژه توسط بسیاری از محققین مورد استفاده قرار گرفته است. در مرجع [14] از تئوری‌های تغییر شکل برشی برای بررسی مسایل ارتعاش آزاد ورق‌های مرکب لایه‌لایه استفاده شده است.
میدان جابجایی و تنش‌های عرضی، به‌دلیل حفظ شرایط همسازی و تعادل از شرایط پیوستگی نوع  در راستای ضخامت ورق برخوردارند. بر این اساس، تئوری‌های مختلفی برای مسایل ورق و پوسته‌ها توسط محققین ارائه شده است. از میان انبوه تئوری‌های موجود، آن دسته از تئوری‌هایی که متغیرهای مجهول آن‌ ها از جنس جابجایی هستند، براساس چگونگی تعریف مولفه‌های میدان جابجایی و مدل‌سازی پیوستگی بین لایه‌ها در دو گروه طبقه‌بندی می‌شوند.
الف) تئوری های لایه لایه ای
در این دسته از تئوری‌ها، میدان جابجایی درهر لایه به صورت مستقل تعریف می‌شود. بنابراین در لایه ام خواهیم داشت:
تعداد متغیرهای مجهول در این نوع فرمول‌‌سازی، بستگی به مقدار لایه‌ها دارد. معادله‌های حاکم برای هر لایه به صورت جداگانه نوشته می‌شود و شرایط مرزی بین لایه‌ای مرتبط با تنش‌ها و تغییر شکل‌ها به عنوان شرط‌های اضافی اعمال می‌گردند.
در صورت اهمیت جزئیات رفتار هر یک از لایه‌ها به‌صورت جداگانه و یا احتمال بروز تغییرات شدید گرادیان مولفه‌های میدان جابجایی در بین لایه‌ها، لزوم استفاده از تئوری‌های لایه‌لایه‌ای قابل توجیه است. اگرچه کاربرد آن‌ ها منجر به افزایش تعداد مجهول‌های مساله و پیچیدگی بیشتر آن می‌گردد. تئوری‌های لایه‌لایه‌ای برخلاف تئوری‌های تک‌لایه معادل، امکان ارضای پیوستگی تنش‌های عرضی در مرز بین لایه‌ها را فراهم می‌سازد. این تئوری‌ها به دو دسته عمده تقسیم می شوند:
1) تئوری‌های لایه‌لایه‌ای جزیی[1]
دراین تئوری‌ها توزیع لایه‌ای تنها برای مولفه‌های درون-صفحه‌ای میدان جابجایی در نظر گرفته می‌شود.
2) تئوری‌های لایه‌لایه‌ای کامل[2]
که در آن هر سه مولفه جابجایی در هر لایه به صورت جداگانه تعریف می‌شوند.
تئوری‌های لایه‌لایه‌ای قابلیت بیان تغییرات زیگزاگی مولفه‌های جابجایی درون-صفحه‌ای را در راستای ضخامت ورق دارند. این رفتار زیگزاگی در ورق‌های لایه‌لایه‌ای ضخیم آشکارتر است، به دلیل این‌که در آن‌ ها مدول برشی عرضی تغییرات شدیدی در راستای ضخامت ورق دارد. تعداد بسیاری از این دسته از تئوری‌ها در مراجع ][59 و ][6 یافت می‌شود. به‌عنوان نمونه، کو و همکاران ] [8، تئوری لایه‌لایه‌ای درجه‌های بالایی را به فرم زیر برای آنالیز دینامیکی ورق‌های لایه‌لایه‌‌ای به‌کار برده‌اند. نثیر و همکاران، [7]  شکل تعمیم‌یافته‌ای از این نوع تئوری‌ها را با بیان متغیرهای جابجایی براساس چند‌جمله‌ای‌های لاگرانژی ارائه دادند.
[1] Partial layer wise theories
[2] Full layer wise theories
[1] First-order shear deformation theory
[2] Higher-order shear deformation theory
[3] Classical laminated plate theory
[4] Finite Strip method


فرم در حال بارگذاری ...

« دانلود پایان نامه ارشد: بهینه ­سازی خواص تشعشعی لایه­ های نازکپایان نامه ارشد: تحلیل تنش پاد صفحه ای صفحات مستطیل شکل تضعیف شده توسط چندین ترک و حفره »
 
مداحی های محرم