وبلاگ

توضیح وبلاگ من

دانلود پایان نامه ارشد : تعیین زاویه شیب سرتاسری معدن تاگویی 2 بوکسیت جاجرم


امروزه مبحث پایداری شیب یکی از پارامترهای اصلی و تعیین­کننده در اقتصاد و ایمنی معادن روباز است. اختصاص یک شیب برای کل دیواره‌های معدن در بیش‌تر معادن درست نیست چرا که دیواره‌های معدن معمولاً از مصالح مختلف و با شرایط ساختاری متفاوتی تشکیل‌شده‌اند و بنابراین، باید طراحی شیب پس از تعیین پارامترهای ژئوتکنیکی، سنگ‌شناسی مختلف و مشخص­شدن محدوده­های ژئوتکنیکی تعیین شود.
مطالعات پایداری دیواره‌های معادن، پس از وقوع چند ریزش، به طور جدی مورد توجه قرار گرفت. از جملۀ این موارد می­توان به ریزش دیوارۀ معدن چوکیکاماتا[1] در کشور شیلی اشاره کرد. ارتفاع این دیواره در زمان ریزش ۲۸۴ متر و زاویۀ آن ۴۳ درجه بوده است. علت اصلی این ریزش، لرزش­های ناشی از زمین­لرزه تشخیص داده‌شده است. [1]
از طرف دیگر کسب حداکثر سود ممکن حاصل از استخراج مادۀ معدنی تحت شرایط ایمن یکی از اهداف اصلی معدن­کاری در طول تاریخ بوده است. اگر چه در ظاهر ایمنی و سود دو هدفی هستند در خلاف جهت یکدیگر (بدین معنی که با افزایش یکی، دیگری کاهش می­یابد) اما تجربه نشان داده که افزایش ایمنی تا یک حد قابل‌قبول در معادن باعث عدم وقوع حوادث ناگواری شده که این به نوبۀ خود به طور غیرمستقیم باعث افزایش سود قابل وصول برای معدن­کار می­ شود؛ بنابراین یکی از جلوه‌های اثر متقابل ایمنی و سود، بحث پایداری شیب در معادن روباز است. افزایش شیب سرتاسری معادن روباز از یک طرف باعث کاهش نسبت باطله برداری و به تبع آن افزایش عایدی معدن شده و از طرف دیگر افزایش شیب، احتمال ناپایداری را در شیروانی افزایش می‌دهد. لذا در اولین مرحله از طراحی معدن باید مطالعات ژئوتکنیکی، زمین‌شناسی ساختمانی و زمین آب‌شناسی کاملی از معدن انجام پذیرد تا بر اساس این مطالعات و همچنین شناخت کافی از نوع ریزش احتمالی در بخش‌های مختلف معدن، در مرحله دوم حداکثر زاویة شیب ایمن برای معدن به دست آید. مسلماً در این مراحل تأثیر روش‌های مختلف پایدارسازی نظیر آبکشی روی زاویة شیب ایمن و همچنین هزینه‌های تحمیلی آن‌ ها به معدن­کار باید مورد بررسی دقیق قرار گیرد.
روش استخراج روباز یکی از روش‌های معدن­کاری با هزینۀ استخراج به نسبت پایین است که در آن قابلیت مکانیزاسیون و مقدار تولید می‌تواند خیلی زیاد باشد. لذا استخراج کانی‌هایی با عیار خیلی کم که استخراج آن‌ ها با روش‌های زیرزمینی غیراقتصادی است، امکان‌پذیر است. در چند دهة اخیر عمق معادن روباز افزایش یافته و عمق‌های بیش‌تر از 500 متر، دیگر غیرمعمول نیستند. از آنجایی که روش استخراج زیرزمینی هنوز پرهزینه‌تر از روش استخراج روباز است، استخراج یک چنین کانسارهایی با روش زیرزمینی و چشم‌پوشی از استخراج روباز در آینده غیر محتمل است. لذا انتظار می‌رود که عمق معادن روباز در آینده افزایش یابد، البته به شرط اینکه هزینة تولید کاهش و قیمت فلز ثابت بماند. یک پیچیدگی مهم که با افزایش عمق به ‌وجود می‌آید‏، خطر ناپایداری بزرگ‌مقیاس است. شکست

پایان نامه

 بزرگ‌مقیاس به طور بالقوه در کل ارتفاع شیروانی و آن هم در محدودة نهایی معدن اتفاق می‌افتد. لذا پر شیب نگاه‌داشتن دیوارة معدن تا آنجا که ممکن است در کاهش نسبت باطله‌برداری که به نوبة خود با هزینة معدن­کاری رابطة تنگاتنگ دارد، بسیار حیاتی است. پس در این حالت طراحی محدودة نهایی فقط به توزیع عیار و هزینة تولید بستگی ندارد بلکه به مقاومت کلی توده‌سنگ و پایداری نیز وابسته است. در هر معدن باید پتانسیل ریزش، ارزیابی‌شده و آن را با طرح پیت نهایی هماهنگ ساخت.

برای یک معدن روباز چندین زاویۀ شیب وجود دارد. زاویة شیب دیوارة پله، زاویة دیوارة بین رمپی و زاویة دیوارة سرتاسری باید بر اساس ارزیابی پایداری در هر واحد به طور جداگانه تعیین شوند. به طور کلی ناپایداری‌های ایجادشده در پلۀ معادن روباز به نسبت معمول است و تأثیر چندانی در طرح پیت ندارد. پله‌های منفرد و دیواره‌های بین رمپی در یک معدن روباز می‌توانند همزمان پایدار باشند درحالی‌که ممکن است دیوارة سرتاسری پایدار نباشد ]2[.
روش‌های پیشنهادی برای بررسی پایداری شیروانی‌ها به دو گروه تقسیم می‌شوند:
الف- روش‌های مبتنی بر تعادل حدی.
ب- روش‌های مبتنی بر تحلیل عددی.
یکی از پرکاربردترین روش‌های تحلیل پایداری شیروانی‌ها روش تعادل حدی است. دلیل کاربرد وسیع این روش، سهولت فرضیات و سابقة ایجاد آن است. این روش برای اولین بار توسط کولمب در اواخر قرن هجدهم در مسائل مکانیک خاک به‌کار برده شد. در این روش با فرض یک سطح لغزش اختیاری، صلب بودن بخش گسیخته شده و استفاده از معیار گسیختگی موهر-کولمب، ضریب اطمینان به صورت مقایسة مقاومت برشی موجود با مقاومت برشی مورد نیاز برای تعادل تعریف می‌گردد. در این روش هرگاه ضریب اطمینان بزرگ‌تر از 1 باشد، توده‌سنگ پایدار و اگر کوچک‌تر از 1 باشد، ناپایدار است. در حالتی که ضریب اطمینان برابر 1 باشد، حالت بحرانی یا حدی (آغاز گسیختگی) خواهد بود.
اگر سطح لغزش مشخص نباشد، سطوح مختلفی به عنوان سطح لغزش فرض می‌شوند و ضریب اطمینان آن‌ ها محاسبه می­ شود. در نهایت سطحی که کم‌ترین ضریب پایداری را دارا است، به عنوان محتمل‌ترین سطح لغزش در نظر گرفته خواهد شد.
باید توجه داشت که روش‌های مبتنی بر تعادل حدی هرچند به طور گسترده برای تحلیل مسائل پایداری شیب به کار می‌روند، اما چندین نقطه‌ضعف در این روش‌ها وجود دارد که مهم‌ترین آن، منظور نکردن رابطه تنش-کرنش مصالح در تحلیل‌ها است. همچنین به دلیل عدم رعایت قوانین مکانیک محیط‌های پیوسته، جایگاه پاسخ مسایل نسبت به جواب واقعی در این روش مشخص نیست [3]. از معایب دیگر این روش‌ها این است که این روش‌ها در نظر نمی‌گیرند که شیروانی آیا یک خاک‌ریز یا یک شیب طبیعی است یا یک شیروانی حفاری شده است و از اثرات نمو ساخت، تنش اولیه، رفتار تنش- کرنش و غیره صرف‌نظر می‌کنند و احتمالاً در این روش‌ها پایداری شیب به طور محتاطانه­ای پیش‌بینی می‌شود [4].
یکی از دیگر از روش‌های بررسی پایداری شیروانی‌ها، مدل­سازی عددی است. استفاده از مدل­سازی عددی، به دلیل مزایای زیادی که دارد روزبه‌روز گسترش بیش‌تری پیدا کرده است. مبنای روش‌های عددی، مدل­سازی معادلۀ حاکم بر رفتار پدیده و حل این معادله بر اساس داده‌های شرایط مرزی است. در نتیجه، دقت نتایج مدل­سازی به عواملی همچون درک مناسب معادله حاکم بر پدیده، انتخاب روش مدل­سازی متناسب با مشخصات معادله حاکم، دقت حل معادلات، دقت در تعریف شرایط مرزی و در نهایت میزان دقت و صحت شرایط مرزی بستگی دارد.
با پیشرفت رایانه‌های شخصی، روش‌های عددی به طور روزافزونی در تحلیل پایداری شیروانی‌ها استفاده می‌شود. مزایای روش‌های عددی مثل اجزای محدود، تفاضل محدود، اجزای مرزی و غیره برای تحلیل پایداری شیب نسبت به روش‌های متداول تعادل حدی به صورت زیر خلاصه می‌شود:

 

    • در روش‌های عددی هیچ فرضی در مورد شکل یا محل سطح گسیختگی به کار نمی‌رود. گسیختگی به صورت طبیعی در آن قسمت از مصالح که مقاومت برشی قادر به تحمل تنش‌های برشی اعمال‌شده نیست، روی می‌دهد.

 

    • در روش‌های عددی در مورد نیروهای بین باریکه‌ها و امتداد آن‌ ها فرضی در نظر گرفته نمی‌شود، چرا که اصولاً در این روش، باریکه مفهومی ندارد. روش اجزای محدود تا زمانی که گسیختگی روی دهد، تعادل کلی را حفظ می‌کند [5].

 

    • روش‌های عددی می‌توانند به شیب‌هایی با شکل پیچیده و نهشته‌های خاکی در دو یا سه بعد برای مدل کردن واقعی تمام انواع مکانیسم‌ها اعمال شود.

 

    • در روش‌های عددی مدل‌های عمومی‌ مصالح، شامل مدل موهر-کولمب و تعداد بی‌شماری مدل‌های دیگر می‌توانند به کار روند.

 

    • در این روش‌ها تنش‌های تعادل، کرنش‌ها و مقاومت‌های برشی مربوطه به صورت صحیح محاسبه می‌شوند.

 

    • در روش‌های عددی مکانیسم گسیختگی می‌تواند به صورت نامحدودی آزاد و عمومی باشد؛ یعنی فرض محدود­کنندة یک سطح گسیختگی دایره‌ای یا لگاریتمی ‌در این جا ضرورت ندارد.

 

  • در تحلیل‌های مبتنی بر روش‌های عددی، در نظر گرفتن عواملی چون رفتار ترد مصالح و خواص متغیر مصالح مقدور است و نیز می‌توان وجود عوامل اضافی در محیط مصالح مانند زهکشی و وسایل نگه‌دارنده را در محاسبات منظور نمود [6].

در سال‌های اخیر مؤلفان مقایسه‌های عددی مختلفی از ضریب اطمینان شیروانی‌ها بین روش‌های عددی و روش تعادل حدی تحت شرایط دو بعدی انجام داده‌اند و نتیجه گرفته‌اند که روش اجزای محدود با یک مدل مشخصة الاستو-پلاستیک (موهر-کولمب) یک روش معتبر و نیرومند برای محاسبة ضریب اطمینان شیروانی‌ها است [7].
[1] Chuquicamata

دانلود پایان نامه ارشد:شبیه سازی جریان درون شیر کنترلی به کمک نرم افزار CFD


     شیرهای کنترلی بصورت وسیعی در زمینه های مختلف صنعتی از جمله صنایع نفت و گاز، نیروگاه ها، پتروشیمی و سیستم های انتقال آب استفاده می شوند. این شیرها دارای انواع مختلفی می باشند که از آن جمله می توان به شیرهای نوع کروی (Glob)، توپی (Ball)، پروانه ای (Butterfly) و پلاگی(Plug) اشاره کرد. هدف از مدلسازی سیالاتی شیر كنترلی، شبیه سازی رفتار جریان در داخل شیر با بهره گرفتن از نرم افزار CFX است تا به كمك نتایج آن بتوان یک پروفیل داخلی مناسب برای شیر كنترلی به گونه ای طراحی نمود كه از لرزش و ایجاد نویز و سروصدای بیش از حد در شیر جلوگیری کند. بعلاوه با بهره گرفتن از مدلسازی می توان از ایجاد افت فشار بیش از حد در شیر جلوگیری كرد و در واقع از آسیب احتمالی شیر كنترلی اعم از سایش و خوردگی پیشگیری نمود. به عبارت دیگر استفاده از مدلسازی سیالاتی كمك می كند كه به جای صرف هزینه و وقت زیاد برای انجام آزمایش های تجربی، رفتار سیال را در داخل شیر پیش بینی كرده و به بهینه سازی پارامترهای طراحی پرداخت.
1-2- بیان مسئله
    مطابق تعریف مندرج در استاندارد ابزار دقیق امریکا، شیر كنترل وسیله ای است که با اعمال نیرویی غیر از نیروی دست عمل می نماید و میزان جریان سیال را در یک سیستم كنترل فرایندی تنظیم می كند، شیر كنترل شامل یک شیر است و به یک مكانیزم محركه، که توانائی تغییر عنصر کنترل کننده سیال را دارد متصل می باشد. این تغییر بر مبنای سیگنالی است كه از سیستم كنترل دریافت می کند. لذا با توجه به سر و صدای زیاد و لرزش شدید در یكی از شیرهای كنترلی جریان گاز (FCV) منطقه پارسیان، ما را بر آن داشت كه با مدل كردن جریان درون شیر توسط نرم افزار CFX و شبیه سازی جریان درون آن بتوانیم تحلیل دقیق تری از نیروها و تنش های اعمالی در مورد قسمتهای مختلف شیر داشته باشیم تا بتوانیم علاوه بر بهینه سازی شرایط كاری، مساله نویز را نیز بررسی و در صورت امکان کاهش دهیم. که اولین قدم طراحی و مدلسازی شیر کنترلی و سپس شبیه سازی رفتار جریان درون شیر کنترلی و در نهایت بهینه سازی و ارائه راهکار می باشد. لذا با توجه به در دسترس بودن اطلاعات یک شیر کنترلی 3 اینچ از نوع کروی (Globe) با عملگر پنوماتیکی  و خاصیت خطی طبق استاندارد  ANSI 2500 به منظور کنترل دبی گاز چاه 10 آغار با طراحی و مدلسازی آن و سپس شبیه سازی جریان درون آن به بررسی پارامترهای مورد نظر پرداختیم.
1-3- اهداف:
    جهت کاهش لرزش و سروصدا در شیرهای کنترلی و کنترل نویز میتوان بر روی منبع یا روی مسیر و یا بر روی هر دوی آنها تغییراتی اعمال کرد. کنترل نویز در محل منبع، بهترین روش کنترل آن است البته به شرطی که از لحاظ فیزیکی و اقتصادی ممکن باشد. یکی از راه های متداول برای کنترل نویز در محل منبع ایجاد نویز، استفاده از تریمهای مخصوص است. این نوع تریم با داشتن شیارهای باریک و متعدد اغتشاش جریان را تا حد ممکن کاهش می دهد و توزیع مطلوب سرعت را فراهم می کند. که جهت رسیدن به این نتایج و بدست آوردن توزیع سرعت می بایستی جریان درون شیر کنترلی را به کمک یکی از نرم افزارها شبیه سازی کرد تا بتوانیم تحلیل دقیقتری از نیروها و تنش های اعمالی در مورد قسمتهای مختلف شیر داشته باشیم و سپس مساله نویز را نیز بررسی کرده و در صورت امکان کاهش دهیم. که جهت انجام کار اولین قدم طراحی و مدلسازی شیر کنترلی و سپس شبیه سازی رفتار جریان درون شیر کنترلی و در نهایت بهینه سازی و ارائه راهکار می باشد.
1-4- مدل مطالعه:

پایان نامه

 

     شیر کنترلی مورد نظر جهت انجام شبیه سازی جریان درون آن یک شیر کنترلی 3 اینچ از نوع کروی (Globe) با عملگر پنوماتیکی  و خاصیت خطی طبق استاندارد  ANSI 2500به منظور کنترل دبی گاز چاه 10 آغار می باشد که در یک زمان خاص تحت فشار ورودی  Bar5/187 و فشار خروجی Bar 155 دمای ورودی 07/61 درصد باز بودن شیر کنترلی 29% و دبی خروجی از شیر    847/20 و سیال عامل گاز متان با 45/18   می باشد.
1-5- روش کار
روش پیاده شده در پایان نامه شامل دو قسمت اصلی طراحی و مدلسازی شیر کنترلی و شبیه سازی رفتار جریان درون شیر کنترلی با بهره گرفتن از دو نرم افزار Catia و Ansys CFX می باشد.
1-5-1- طراحی و مدلسازی شیر کنترلی
طراحی تجهیزات مکانیکی را میتوان به دو دسته اصلی طراحی مستقیم و طراحی به روش مهندسی معکوس دسته بندی نمود. در این پروژه، به دلیل در اختیار بودن نمونه شیر کنترلی، طراحی Cage از روش فرایند مهندسی معکوس و طراحی مسیر عبور جریان درون بدنه از روش طراحی مستقیم بهره گیری شده است. که با توجه به مستندات و استانداردهای مرتبط با شیرهای کنترلی، مقایسه و سپس Cage آن بصورت مستقیم با نرم افزار Catia طراحی و مسیر عبور جریان درون شیر پس از چندین مرحله سعی و خطا طراحی گردید. و سپس به محیط Design Modler نرم افزار Ansys CFX انتقال داده شد که از بین آنها نتایج چند مدل مهمتر درفصل 4 و 5 به تفصیل آورده شده است.
1-5-2- مدلسازی سیالاتی شیر کنترلی
برای تحلیل سیالاتی شیر کنترلی از نرم افزار Ansys CFX استفاده شده است و شکل کلی شیر که با نرم افزار Catia طراحی شده را پس از انتقال به محیط Ansys CFX و جداسازی مسیر عبور سیال در محیط Desigen Modler و همچنین در مواردی نیز بدلیل داشتن تقارن نسبت به محور YZ از حالت Symmetry استفاده شده و پس از انجام عملیات یکسان سازی وارد محیط Meshing می کنیم. و با توجه به اینکه نرم افزار Ansys CFX خود شامل چندین محیط می باشد و در هر محیط نیز باید کارهای مربوط به همان محیط را انجام داد بنابراین روش انجام کار در محیط های مختلف به شرح ذیل می باشد.
1-5-2-1- مدل المان محدود
مدل طراحی شده در Catia وارد محیط CFX  می شود و در آنجا قسمت داخلی شیر (در واقع حجم كنترل) جدا شده و سپس این حجم كنترل وارد محیط ایجاد شبكه محاسباتی (Meshing) می گردد. در این محیط اندازه اولیه المانهای حجمی جسم و همچنین عملیاتی مانند ریزكردن المانهای یک ناحیه خاص انجام می گیرد. بعلاوه در دیواره های نزدیک سطوح مرزی (با توجه به اینكه سرعت تغییرات در نواحی نزدیک سطوح مرزی بالاست) المان منظم تری ایجاد می گردد. و در چندین حالت مختلف جریان گذرنده از درون Cage و مسیر عبور جریان از درون بدنه را بررسی می کنیم.
1-5-2-2- شرایط مرزی
با توجه به فیزیک مساله، شرایط مرزی مناسب یكی از سه حالت، اعمال فشار در ورودی و دبی در خروجی، فشار در خروجی و ورودی (اختلاف فشار ورودی و خروجی) و اعمال دبی در ورودی و فشار در خروجی می باشد. از آنجایی كه شکل قفس از روش مهندسی معکوس بدست آمده و جهت بررسی نتایج نرم افزار و مقایسه با شرایط کارکرد واقعی، شرایط مرزی مطلوب، اعمال فشار در ورودی و خروجی می باشد تا دبی بدست آمده با دبی شرایط کارکرد، مقایسه گردد و سپس همان شرایط را برای شكل داخلی شیر که از فرایند طراحی حاصل شده است، اعمال می کنیم و با توجه به افت فشار ایجاد شده، مقدار دبی را بدست می آوریم.
1-5-2-3- روش های حل
با توجه به در اختیار نبودن اطلاعات کامل شیر کنترلی از شرکت سازنده، مراحل انجام کار را با نمونه بسته شده در مسیر جریانی گاز آغار بررسی و اطلاعات بدست آمده را با داده های خروجی از آن مقایسه گردید. همچنین با توجه به اینكه یكی از اهداف مدلسازی سیالاتی شیر كنترلی، بدست آوردن نمودار عملكرد شیر (نمودار دبی بر اساس درصد بازشدگی) می باشد و این نمودار توسط شركتهای سازنده تحت افت فشار ثابت ارائه می شود. بنابراین در اینجا نیز فشار ورودی و خروجی، در هر مرحله به شیر اعمال می گردد و توسط CFX دبی عبوری در درصد بازشدگی مورد نظر تحت افت فشار مشخص شده بدست می آید. همچنین در اكثر تحلیل های انجام شده با توجه به موقعیت قرارگیری قفس در داخل شیر، یکبار در حالت کامل و یکبار از تقارن مدل نسبت به صفحه YZ با توجه به شكل استفاده گردیده است و بقیه سطوح خارجی شیر نیز بعنوان دیواره در نظر گرفته شده است.
در مورد شرایط مرزی ورودی و خروجی شیر، با توجه به گزینه های موجود در محیط CFX، در ورودی فشار كل و در خروجی فشار استاتیكی به شیر اعمال می گردد. این مقادیر بر اساس فشارهای دو طرف شیر كنترلی انتخاب شده است كه این مقدار اختلاف فشار در حالت كاركرد با توجه به دما و فشار گاز در ساعات مختلف مقادیر مختلفی است که برای بدست آوردن دبی و مقایسه کردن با آن در یک زمان خاص و تحت شرایط یکسان دما و فشار، دبی را مقایسه می کنیم. و سپس با توجه به شرایط کاری در هر مرحله پس از انجام عملیات با این شرایط مقایسه گردیده است.
همچنین با فرض ناچیز بودن تغییرات دمایی در شیر نوع فرایند همدما (Isothermal) و دمای فرایند 61 درجه سانتیگراد انتخاب شده است. جریان در داخل شیر، مغشوش در نظرگرفته شده و این جریان مغشوش با بهره گرفتن از معادلات مدلk-ε  بیان شده است.
همانطور که گفته شد Cage و مسیر عبور جریان در بدنه طراحی شده را در حالتهای مختلف بازشدگی، و هر کدام با چندین مرحله مش درشت و ریزتر بررسی گردید و سپس نتایج حاصله مقایسه گردید. همچنین برای بدست آوردن نمودار عملکرد شیر برای هر مدل شیر طراحی شده به ازای بازشدگی از 0 تا 100 درصد (به ازای بازه های 10 درصدی) می بایستی مقدار دبی توسط  CFX مشخص گردد. و در مقادیر مختلف بازشدگی، مقدار دبی بدست آمد و نمودار عملكرد شیر ترسیم گردید و با نمودار عملكرد شیر اصلی مقایسه گردید.

دانلود پایان نامه ارشد: شبیه سازی عددی انتقال حرارت و جریان مغشوش نانوسیال آب-اکسید مس


در سالیان اخیر توجه به مسئله بهبود انتقال حرارت در علوم مهندسی و صنعت، با سرعت افزاینده‌ای در حال رشد است، به طوری که هم اکنون به بخش بسیار مهمی از تحقیقات تجربی و نظری تبدیل شده است. در حال حاضر مقالات منتشر شده مرتبط با بهبود انتقال حرارت در سیستم‌های حرارتی حدود %10 کل مقالات مرتبط با مبحث انتقال حرارت را شامل می‌شوند [1]. بهبود انتقال حرارت با بهره گرفتن از روش‌های مرسوم باعث صرفه‌جویی قابل‌توجهی در هزینه‌ها و منابع انرژی و حفظ محیط زیست شده است. برهم زدن زیر لایه آرام در لایه مرزی جریان مغشوش، ایجاد جریان ثانویه، اتصال دوباره سیال جداشده به سطح، ایجاد تأخیر در توسعه لایه مرزی، تقویت ضریب هدایت حرارتی مؤثر سیال، افزایش اختلاف دما بین سطح و سیال و افزایش نرخ جریان سیال به صورت غیرفعال از جمله مهم‌ترین مکانیزم‌هایی هستند که منجر به افزایش انتقال حرارت از طریق جریان سیال می‌شوند [2].
روش‌های تقویت انتقال حرارت بر اساس یک طبقه‌بندی مرسوم و پذیرفته شده به دو دسته فعال و غیرفعال تقسیم می‌شوند [3]. روش‌های فعال به روش‌هایی گفته می‌شود که در آن بقای مکانیزم تقویت انتقال حرارت وابسته به وجود یک نیروی خارجی است. در حالی که در روش‌های غیرفعال نیازی به وجود چنین نیرویی نیست. جدول ‏1‑1 این طبقه‌بندی را به کل دقیق‌تر و با ذکر مهم‌ترین روش‌های موجود در هر دسته نمایش داده است.
استفاده از هر کدام از این روش‌ها به شرایط کاری موجود و نیازهای کاربر بستگی دارد. اما روش‌های فعال به دلیل استفاده دائمی از یک منبع توان معمولاً پرهزینه‌تر از روش‌های غیرفعال هستند. لذا روش‌های غیرفعال در زمینه‌های مختلف صنعت و تولید قدرت نقش پیشگام را دارند. مروری بر تاریخچه روش‌های غیرفعال نشان می‌دهد که فن‌آوری انتقال حرارت را می‌توان به سه نسل تقسیم کرد [4].

دانلود مقاله و پایان نامه

 نسل اول بر کانال‌های ساده برای انتقال حرارت متمرکز بود. توسعه انتقال حرارت در نسل دوم به واسطه استفاده از تجهیزات و ابزار تقویت‌کننده دوبعدی که دارای ابعادی قابل‌مقایسه با ابعاد کانال بودند، ارتقا یافت. نسل سوم به واسطه استفاده از ابزار و تجهیزات سه‌بعدی (زبری‌های سه‌بعدی، برآمدگی‌ها و زائده‌ها) در مقیاس‌های ریزتر و حتی در حد میکرون زمینه بهبود انتقال حرارت را فراهم کرد.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

جدول ‏1‑1 –طبقه‌بندی روش‌های انتقال حرارت [3]
روش‌های فعال روش‌های غیرفعال
   
سطوح پرداخت‌شده کمک‌کننده‌های مکانیکی
سطوح زبر ارتعاش سطح
سطوح گسترش‌یافته ارتعاش سیال
ابزارهای تقویت‌کننده جابه‌جا شده میدان‌های الکتروستاتیکی
ابزارهای پیچش جریان مکش یا دمش
لوله‌های مارپیچ برخورد جت
افزودنی‌ها به سیالات  
ابزارهای کشش سطحی  

1-2           روش‌های غیرفعال:
 برخی از مهم‌ترین روش‌های غیرفعال مرتبط با تحقیق حاضر که امروزه دامنه کاربرد بسیار وسیعی را به خود اختصاص داده‌اند، در زیر به صورت اختصار تشریح می‌شوند.
1-2-1  سطوح زبر
سطوح زبر در انواع و اشکال مختلف تولید می‌شوند. کاربرد عمده سطوح زبر عموماً در جریان‌های تک فازی است. در جریان مغشوش درون مجاری یک ناحیه با سرعت کم در مجاورت دیواره‌ها تشکیل می‌شود که به عنوان زیر لایه لزج شناخته می‌شود. ضخامت این لایه برای شرایط جریان مغشوش توسعه‌یافته حدود3 تا  5 درصد شعاع لوله است [4] . این ناحیه دارای بیش‌ترین مقاومت حرارتی است. بنابراین هر روشی که زیر لایه لزج را حذف کند سبب تقویت انتقال حرارت خواهد شد. برای کنترل ساختار این لایه در حال حاضر دو روش مختلف به صورت گسترده مورد استفاده قرار می‌گیرد. یکی از این راه‌ها توسعه مناطق جدایش جریان نزدیک دیوار است که می‌توان با بهره گرفتن از یک چیدمان متناوب از مولد‌های گردابه (برآمدگی‌ها یا دندانه‌ها، سطوح مارپیچ، زبری و …) بر سر راه جریان آن را تأمین کرد. روش دیگر با تغییر شکل دادن سطح انتقال حرارت به شکل تورفتگی‌های سه‌بعدی (سوراخ، حفره) امکان‌پذیر است. البته وجود برخی زبری‌ها نظیر دندانه تا حد کمی باعث افزایش سطح انتقال حرارت نیز می‌شود که معمولاً تأثیر آن در مقایسه با تأثیر اغتشاش ناشی از دندانه‌ها بسیار ناچیز است. شکل ‏1‑1 الگوی جریان بعد از یک دندانه را نمایش می‌دهد.

پایان نامه ارشد : شبیه سازی عددی تأثیرات تولیدکننده گردابه بر افزایش انتقال حرارت سیالات غیر نیوتنی

. 60
4-2 نتایج مسئله دوبعدی.. 60
4-2-1 بررسی شبکه. 60
4-2-2 اعتبار سنجی نتایج.. 61
4-2-3 ارائه و تحلیل نتایج.. 63
4-2-4 بررسی تأثیر فاصله بین سیلندری در افزایش انتقال حرارت و ساختار جریان.. 99
4-3 نتایج مسئله سه بعدی.. 116
4-3-1 بررسی شبکه. 117
4-3-2 ارائه و تحلیل نتایج.. 118
4-3-3 تأثیر ارتفاع تولید کننده گردابه بر ساختار جریان و انتقال حرارت… 133
4-4 جمع بندی، نتیجه گیری و پیشنهادات… 141
منابع و مآخذ. 143
1 لایه مرزی
لایه مرزی هیدرودینامیکی (شکل 1-1)، ناحیه ای از جریان است که در آن، نیروهای تنش برشی، نیروهای به وجود آمده ناشی از حضور دیواره جامد می باشند یا ناحیه ای است که جریان اطراف متأثر از حضور دیواره می باشند. به عبارت دیگر، لایه مرزی هیدرودینامیکی ناحیه ای از جریان است که در آن سیال اصطکاک و درگ حاصل از حضور دیواره را حس می کند. در این حالت، نزدیکترین مولکولها به دیواره ( که به دیواره چسبیده‌اند) به واسطه شرط عدم لغزش، نسبت به دیوار اصلاً حرکت نمی‌کنند. با فاصله گرفتن از دیواره، رفته رفته اثر دیواره بر روی جریان آنقدر کم می‌شود که دیگر جریان حضور دیواره را حس نمی‌کند، یا به عبارت دیگر اثر دیواره بر روی لایه های دور جریان از بین می‌رود. به این ناحیه به اندازه کافی دور از دیواره و غیر متأثر از دیواره اصطلاحاً ناحیه جریان آزاد گفته می‌شود.
 از نقطه نظر انتقال حرارت، لایه مرزی حرارتی (شکل1-2)، ناحیه‌ای است که در آن از نقطه نظر توزیع دما، جریان اطراف متأثر از حضور دیواره‌ای با دمای متفاوت از جریان است. تشکیل لایه مرزی حرارتی و لایه لایه شدن سیال باعث تشکیل عایق و تشکیل مقاومت در مقابل انتقال حرارت از دیواره به سیال می‌گردد. در لایه مرزی تشکیل شده در جریان های آشفته، به واسطه حرکات آشفته جریان، شکل منظم لایه‌های جریان مجاور دیواره از بین رفته و لذا لایه‌های ممانعت کننده میان دیواره و جریان آزاد به نوعی کنار رفته و انتقال حرارت بهتری در مقایسه با جریان‌های آرام صورت می‌گیرد.
شکل 1-1  لایه مرزی هیدرودینامیکی تشکیل شده بر روی صفحه تخت[1]
شکل 1-2  لایه مرزی حرارتی تشکیل شده بر روی صفحه تخت[1]
1-2 تبدیل جریان آرام به آشفته
برای رسیدن به جریان آشفته مخصوصاً بر روی سطوح جامد و در داخل کانال‌های باز و یا لوله‌ها، ابتدا جریان بایستی از حالت آرام وارد مرحله گذر از حالت آرام به آشفته و در نهایت وارد فاز جریان آشفته گردد. گاهی اوقات نیز ممکن است به واسطه عوامل مختلف خارجی، ناحیه گذرا کوچک شده و یا حتی ناپدید گردد که در این صورت تبدیل مستقیم جریان آرام به آشفته در طول یک مسیر کوتاه را شاهد خواهیم بود. به عنوان مثال، در لایه مرزی تشکیل شده بر روی سطوح غیر هموار و یا بر روی سطوح دارای انتقال جرم از طریق سطوح و یا در جریان‌های اختلاطی و یا در جریان‌های مافوق صوتی که اندرکنش شوک و لایه مرزی را داریم می‌توان حالاتی را مشاهده نمود که در آنها تبدیل جریان آرام به آشفته در طی یک فاصله بسیار کوتاه را شاهد باشیم.
گذر از حالت جریان آرام به آشفته در طی فرایندی رخ می دهد که در آن هسته‌ها و نطفه‌های محلی آشفتگی آنقدر بر روی هم انباشته می‌شوند که تمام میدان جریان را پر می‌کنند. این فرایند را می‌توان همانند آلودگی تدریجی یک جریان عبوری از روی یک سطح آلوده درنظرگرفت که در فواصل و زمان‌های کوتاه، بخش عمده‌ای از جریان پاکیزه و تنها بخش کوچکی از آن آلوده می‌باشد، اما چنانچه به این

دانلود مقاله و پایان نامه

 فرایند فرصت و مکان کافی داده‌ شود و هیچ عامل از بین برنده آلودگی نیز وجود نداشته باشد، آنقدر آلودگی ها در جریان انباشته می‌شوند که تمام جریان آلوده گردد. به این فرایند تدریجی انباشته شدن توده‌های محلی آشفتگی بر روی هم، فرایند گذر از حالت جریان آرام به آشفته گفته می‌شود. برای گذر از حالت جریان آرام به آشفته، مسافت و زمان مشخصی نیاز است تا تمام جریان از هسته‌های آشفتگی اشباع گردد.

شکل 1-3  جریان آرام و تبدیل آن به جریانی آشفته در حین گذر از ناحیه گذرا[1]
چنانچه میزان آشفتگی موجود در جریان آزاد  بالا برود و یا آنکه زبری سطح افزایش یابد، می‌توان انتظار داشت که گذر از حالت آرام به آشفته در مسافتی کوتاهتر و به عبارت دیگر سریعتر رخ دهد و بالعکس. میزان آشفتگی موجود در جریان آزاد را می توان به صورت نطفه‌های آشفتگی موجود در جریان آزاد درنظرگرفت که چنانچه این نطفه‌ها در فضای مساعد برای رشد و نمو قرار‌گیرند، می‌توانند باعث آشفته‌شدن جریان گردند. اینکه این نطفه ها چطور به وجود آمده‌اند و یا از کدام منبع سرچشمه گرفته‌اند، مهم نمی‌باشد. در برخی دیگر از مسائل مهندسی، اثراتی همچون اثر گریز از مرکز، اثر تغییرات چگالی، اثر جاذبه زمین و اثرات کاویتاسیون، ترکیدن حباب، واکنش‌های شیمیایی، اثرات اغتشاشی میدان‌های الکترومغناطیسی و غیره نیز می‌توانند باعث تسریع جریان در رسیدن به حالت آشفته گردند. [1]
1-3 جدایی جریان                            
دو اثر بسیار مهم در جریان سیالات شامل اثرات اینرسی و لزجت است. میزان تأثیر متقابل این دو اثر با تعریف عدد بدون بعد رینولدز ارزیابی می‌گردد. این عدد به صورت نسبت نیروهای اینرسی به نیروهای لزجت تعریف می‌شود:                                                                           (1-1)                                                    
بزرگ بودن عدد رینولدز به معنی حاکم بودن اثرات اینرسی و کوچک بودن آن به معنای غالب بودن اثرات لزجت است. لازم به ذکر است که مفهوم عدد رینولدز در رابطه با مرزها که بر جریان اثر می‌گذارند، یک کمیت موضعی است. به عبارت دیگر انتخاب‌های مختلف طول مشخصه L در محاسبه عدد رینولدز، منجر به مقادیر مختلفی برای این پارامتر خواهد شد. بنابراین جریان بر روی یک جسم ممکن است که محدوده وسیعی از اعداد رینولدز را شامل شود که بستگی به محلی دارد که مطالعه بر روی آن انجام می‌شود. بنابراین در بحث جریانی که از روی یک جسم عبور می‌کند، معمولاً طول مشخصه L به گونه‌ای انتخاب می‌شود که نمایانگر یک بعد کلی از جسم باشد.
اصولاً لزجت تمایل به متوقف کردن حرکت سیال دارد و در صورت نبود عاملی برای ادامه جریان، حرکت سیال به دلیل وجود لزجت به مرور کاهش پیدا کرده و نهایتاً متوقف می‌شود. عامل ادامه جریان در لایه مرزی گرادیان فشار است. گرادیان فشار منفی در جهت جریان عامل تقویت جریان است و باعث افزایش ممنتوم سیال می‌گردد، در این حالت ضخامت لایه مرزی تمایل به کاهش دارد اما اگر فشار در جهت جریان افزایش یابد (گرادیان فشار معکوس) ضخامت لایه مرزی به سرعت افزایش می‌یابد. در این حالت گرادیان فشار به شکل عاملی که با جریان مخالفت می‌کند عمل نموده و باعث کاهش ممنتوم سیال می‌گردد و به تدریج باعث متوقف شدن سیال روی مرز و حتی حرکت آن در خلاف جهت جریان می‌گردد. به این پدیده جدایی جریان می‌گویند. در نقطه جدایی جریان گرادیان سرعت برابر صفر بوده و خط جریان از مرز جدا می‌شود.
1-4 روش‌های افزایش انتقال حرارت
روش‌های افزایش انتقال حرارت تک فازی ممکن است به صورت کنش‌گر[2](فعال)، کنش‌پذیر[3](غیرفعال) و ترکیبی[4] دسته‌بندی شوند. روش‌های کنش‌گر به نیروی خارجی نیاز دارند، مانند میدان‌های الکترونیکی یا آکوستیک، تجهیزات مکانیکی یا ارتعاش سطح. در مقابل روش‌های کنش‌پذیر به نیروی خارجی نیاز ندارند و از یک هندسه سطح ویژه و یا سیال افزوده برای افزایش انتقال حرارت استفاده می‌کنند. روش‌هایی که هم زمان از بیشتر از یک روش برای افزایش انتقال حرارت استفاده می‌کنند، به عنوان روش‌های ترکیبی شناخته می‌شوند.
دو دسته بندی دیگر از روش‌های افزایش انتقال حرارت نیز وجود دارند که عبارتند از: افزایش انتقال حرارت با بهره گرفتن از جریان اصلی و جریان ثانویه. در روش جریان اصلی، مشخصات اصلی جریان با تغییرات هندسی، تغییرات فشار و با روش‌های دیگر تغییر می‌کنند. در روش جریان ثانویه ساختارهای جریان محلی به طور تعمدی وارد می‌شوند. جریان اصلی می‌تواند به صورت‌های کنش‌گر یا کنش‌پذیر تغییر کند. پره‌های موج‎دار یا کانال‌های شیاردار نمونه‌هایی از تغییر جریان اصلی به صورت کنش‌پذیر و جریان ضربانی[5] نمونه‌ای از تغییر جریان اصلی به صورت کنش‌گر است. جریان ثانویه نیز می‌تواند به صورت کنش‌گر یا کنش‌پذیر باشد. استفاده از برآمدگی سطح یک نمونه از جریان ثانویه کنش‌پذیر و نیز استفاده از الکتروهیدرودینامیک برای تولید گردباد نمونه‌ای از جریان ثانویه کنش‌گر است. تولید گردابه برای افزایش انتقال حرارت یک نمونه از روش جریان ثانویه است. گردابه تولید شده می‌تواند به صورت‌های کنش‌گر یا کنش‌پذیر موجب افزایش انتقال حرارت شود.[2]
1-5 گردابه
گردابه ها حالت خاصی از حرکت سیال هستند که ریشه در چرخش المان سیال دارند که در آنها جریان به دور یک مرکز می‌چرخد. سرعت چرخش جریان با دور شدن از مرکز گردابه کمتر می‌شود و در مرکز گردابه جریان دارای سرعت و نرخ چرخش بزرگتری است. در مرکز گردابه به دلیل سرعت بیشتر، فشار سیال کمترین مقدار خود را دارد و در حالت سه بعدی، هر گردابه دارای یک خط مرکزی است که ذرات سیال به دور آن می‌چرخند و چند گردابه موازی با جهت چرخش یکسان می‌توانند در هم ادغام شده و تشکیل گردابه‌های واحد نمایند. انرژی گردابه‌ها به دلیل اثرات لزجت تلف می‌گردد و پس از مدتی گردابه‌ها محو می‌گردند. این پدیده مهم نه تنها در جریان های برشی آرام و آشفته بلکه در جریان های ایده آل نیز دیده می‌شود و در تحلیل نیروها و فرایندهای انتقال نقش اساسی دارد.
 به طور کلی دو نوع گردابه عرضی و طولی وجود دارد. محور گردابه عرضی عمود بر جهت جریان اصلی قرار می‌گیرد. مسیر گردابه کارمن پشت یک سیلندر نامحدود در جریان متقاطع  یک نمونه کلاسیک از سیستم گردابه عرضی است. گردابه های طولی دارای محورهایی موازی با جهت جریان اولیه هستند. جریان حول جهت جریان اصلی می‌پیچد و همیشه سه بعدی است. باله مثلثی با یک زاویه حمله می‌تواند نمونه کلاسیک تولید کننده گردابه طولی باشد.[3]
1-6 ریزش گردابه
گردابه‌ها از سطوح جلویی جریان جسم جریان‌بند شروع به تشکیل شدن می‌کنند و با رشد لایه‌های برشی، از جسم جدا شده و گردابه‌های بزرگی در جریان پایین دست تولید می‌کنند. قسمت داخلی لایه‌ برشی ایجاد شده روی جسم، با سرعت کمتری نسبت به لایه‌های خارجی که تحت تأثیر جریان آزاد قرار دارد، حرکت می‌کند. به همین علت لایه‌های برشی به شکل گردابه‌هایی درآمده و در جریان پخش می‌شوند. به این پدیده که شامل تولید گردابه‌ها و جدایش آنها از سطوح بالایی و پایینی اجسام و پخش آنها در جریان است ریزش گردابه[7] گویند. بررسی ناحیه گردابه‌ای پشت جسم برای اولین بار توسط استروهال[8] انجام گرفت. بر طبق تحقیقات وی، می‌توان پدیده ریزش گردابه را با عدد بدون بعدی به نام استروهال ارزیابی نمود:

دانلود پایان نامه ارشد: شبیه‌سازی و تحلیل تنش و تغییرشکل درحلقه‌های حرارتی


در این تحلیل تنش‌ها و تغییرشکل های ناخواسته ایجاد شده در حلقه‌های حرارتی بررسی می‌شود و نتایج تحلیلی مورد نیازبرای بررسی عیوب فوق در خطوط لوله نفت بدست می‌آید و در نتیجه راهکارهای اصلاحی جهت کاهش خسارات ناشی ارائه می‌شود.همچنین ازنتایج این تحقیق می‌توان پی برد که در چه مواردی آنالیز تنش از اهمیت بیشتری برخوردار است (باتوجه به نوع سیال، دما، فشار، هندسه و جنس لوله)، علاوه بر آن در مواردی که نیاز به استفاده از انبساط خم می‌باشد محاسبات لازم جهت تعیین تنش‌ها و تغییرشکل ها و نیز تعیین نوع تکیه‌گاه ها در قسمت مستقیم و قبل و بعد انبساط خم از نتایج تحقیق بدست می‌آید در مواردی که محدودیت استفاده از انبساط خم وجود دارد روش جایگزین بررسی خواهد شد در نهایت الگوریتم مناسبی به منظور تعیین و یا عدم لزوم آنالیز تنش در سیستم لوله‌کشی و نیز انتخاب انبساط خم و تکیه‌گاه ها ارائه می‌گردد. به منظور یافتن راهکار اصلاحی تغییر شکل های ناخواسته شرایط فرضی متعددی تحلیل می‌شود با تغییر این شرایط به نتیجه دلخواه می‌توان رسید مثلا تغییر در تعداد تکیه‌گاه‌ها، تغییر نوع تکیه‌گاه‌ها، تغییر طول لگ‌ها و…بارهای اعمال شده را بارهای ناشی از وزن، فشار و بارهای نوسانی ناشی از باد، شیرتخلیه، زلزله در پروفیل های مختلف دمایی و تغییر در هندسه شکل حلقه‌ها تحلیل می‌شود.
واژه‌های کلیدی
ساپورت‌های لوله‌کشی ، لوپ حرارتی ، تنش‌های ناخواسته ، حرارت و فشار بالا ، اتصال قابل انبساط
 
1-1بیان مسأله
 هدف از این تحلیل بررسی تنش‌ها وتغییرشکل های ناخواسته ایجاد شده در حلقه‌های حرارتی و بدست آوردن نتایج تحلیلی مورد نیاز برای تغییر شکل های ناخواسته در خطوط لوله نفت است.
1-1-1 ضرورت انجام تحقیق
در این تحقیق سعی می‌شود با ارائه راهکارهای اصلاحی در جهت کاهش خسارات ناشی از تنش‌ها و تغییرشکل های ناخواسته ایجاد شده در حلقه‌های حرارتی بپردازیم. چرا که این خسارات جبران ناپذیرند.
به منظور یافتن راهکار اصلاحی تغییر شکل های ناخواسته شرایط فرضی متعددی تحلیل می‌شود با تغییر این شرایط به نتیجه دلخواه می‌رسیم مثلا تغییر در تعداد تکیه‌گاه‌ها، تغییر نوع تکیه‌گاه‌ها ،تغییرطول لگ‌هاو…بارهای اعمال شده را بارهای ناشی ازوزن، فشار و بارهای نوسانی ناشی ازباد، شیرتخلیه، زلزله در پروفیل های مختلف دمایی و تغییر در هندسه شکل حلقه‌ها تحلیل می‌شود.
همچنین از نتایج این تحقیق می‌توان پی برد که در چه مواردی آنالیز تنش از اهمیت بیشتری برخوردار است(با توجه به نوع سیال، دما، فشار، هندسه و جنس لوله).
علاوه بر آن در مواردی که نیاز به استفاده از انبساط خم می‌باشد محاسبات لازم جهت تعیین تنش‌ها و تغییر شکل ها و نیز تعیین نوع تکیه‌گاه‌ها در قسمت مستقیم و قبل و بعد انبساط خم از نتایج تحقیق بدست می‌آید.
در مواردی که محدودیت استفاده از انبساط خم وجود دارد روش جایگزین بررسی خواهدشد در نهایت الگوریتم مناسبی به منظور تعیین و یا عدم لزوم آنالیز تنش در سیستم لوله‌کشی و نیز انتخاب انبساط خم و تکیه‌گاه‌ها ارائه می‌گردد.
مسئله انبساط حرارتی ناخواسته در اکثر خطوط لوله، شرکت‌های مختلف نفتی، پالایشگاه‌ها، صنایع پتروشیمی و هر جا که لوله انتقال سیال تحت فشار و حرارت است رخ می‌دهد و همیشه یکی از معضلات جهانی در خطوط لوله انتقال سیال است.
از دلایل احتمالی بروز این مسئله می‌توان به موارد زیر اشاره کرد:
طراحی نامناسب خطوط لوله
بکارگیری ساپورت‌ها به روش تجربی
قراردهی ساپورت‌ها در فواصل نامناسب و خارج از محدوده استاندارد
بی تجربگی نفرات عملیاتی و بالابردن و پایین آوردن سریع دمای سیال .
در گذشته اینطور برداشت می‌شد که برای جلوگیری از بروز این حرکات ناخواسته باید لوله را بشدت با ساپورت‌های مختلف مهار کرد به طوری که اصلا اجازه حرکت نداشته باشد.

پایان نامه

 

اما به مرور متوجه شدند که اگرخطوط لوله بشدت و بدون هیچ درجات آزادی طراحی و ساخته شوند تنش پسماند ضربات مهلکی به این خطوط وارد می‌کند و خطرات این نوع ساپورتینگ کمتر از طراحی غلط نیست.
در ایران هنوز هم با این مسائل به روش تجربی برخورد می‌شود به طور نمونه اگر اتصال منبسط شونده‌ای در اثر تغییر ناگهانی دمای یا هر علت دیگری بشدت منبسط شود که ساختار آکاردئونی خود را از دست بدهد یک اتصال یا تجهیز دیگر خریداری می‌شود و بجای آن بسته می‌شود به جای آن که این مسئله ریشه‌ای واساسی حل شود.
اما نسبت به گذشته کشورمان ایران با وجود تحریم های ظالمانه پیشرفت خوبی داشته است و در ادامه با پیشرفت محاسبات ریاضی وت سلط طراحان مقداری از این مسائل حل شده است.
اما در کشورهای پیشرفته این معضلات با نرم افزارهای پیشرفته تحلیل تنش بارها طراحی و کارکرد آن ها در شرایط تقریبا طبیعی سیموله می‌شود اگر ایراداتی در طراحی باشد قبل از ساخت، بسیاری از آن‌ ها حل می‌شود واز تحمیل هزینه‌های زیاد و خطرات جبران‌ناپذیر جلوگیری می‌شود.
1-1-2فرضیه‌ها
تغییر درجه حرارت، موجب تغییر طول خطوط لوله می‌شود که نیروهای محوری قابل ملاحظه‌ای ایجاد خواهد کرد، اگرمقاومت در برابر تغییر طول باشد ، تنش محوری بالایی در طول خطوط لوله ایجاد می‌کند معمولاَ مقاومت در برابر تغییر طول ناشی از نیروهای اصطکاکی بین خطوط لوله با زیرسازی ها و تثبیت‌کننده‌ها صورت می‌گیرد.وجود مقدار بالای تنش پسماند فشاری در طول خطوط لوله باعث انحراف و کمانش در لوله می‌شود.
1-1-3متغیرها
در ادامه بررسی وتحقیقات انجام شده روی این معضل به این نتیجه رسیدیم شاید اگر جای ساپورت‌ها عوض شود و یا اگر فواصلشان تغییر کند یا اگر اندازه لگ‌ها را تغییر دهیم اثرات مخرب انبساط حرارتی ناخواسته، کم یا حذف خواهد شد.
 1-2روش تحلیل
درستی این پیش فرض (تغییرجای ساپورت‌ها و فواصل و اندازه لگ‌ها) را با نرم افزار آباکوس تحلیل و تجربه کردیم که در ادامه نتایج آن به تحلیل آورده خواهد شد.
واضح است اندازه‌گیری سطح تنش در طول لوله،ابزار موثری از نظرنگهداری برای ارزیابی سیستم ایمنی خط لوله است.
درحقیقت ما تحلیل تنش می‌کنیم تا بررسی شود هیچگونه تغییرشکل غیرمجازی رخ ندهد و شکست چقرمه غیرممکن گردد.
دراینجا لازم است با تعاریف و مفاهیمی که در این پژوهش با آن‌ ها سر و کار داریم وپیش فرض هایی که نموده‌ایم بطور اجمالی، آشنا شویم:
1-3 آنالیز تنش خطوط لوله
برای طراحی خطوط لوله باید بتوان تمام بارهای وارد بر سیستم لوله‌کشی را به درستی در نظر گرفت و سیستم را به گونه‌ای طراحی کرد که تحت کمترین تنش قرار گیرد تا طول عمر سیستم و کارایی آن افزایش یابد.  نرم افزار آباکوس و سزار[1] در زمان طراحی سیستم های لوله‌کشی با دماهای بالا کمک بسیار زیادی به مهندسان طراح می‌کند. این نرم افزارها با ترکیب و مد نظر قرار دادن بسیاری از محدودیت‌های مندرج در کدهای استاندارد، محدودیت‌های خود سیستم و محدودیت‌های تجهیزات اضافه و نصب شده در سیستم، آنالیز سیستم را آسانتر و مطمئن‌تر انجام خواهد داد. این نرم افزارها علاوه بر مدل سازی بارهای استاتیکی، همچنین توان مدل سازی بارهای دینامیکی و انبساطی را نیز خواهد داشت.
1-3-1هدف از تحلیل تنش خطوط لوله 

 

 

    • طراحی مقدار تنش در لوله‌ها و اتصالات موجود در سیستم، پایین‌تر از مقادیر مجاز ارائه شده در کدهای استاندارد.

 

    • طراحی بار وارد بر نازل تجهیزات(که به سیستم لوله‌کشی متصل است) پایین‌تر از مقادیر مجاز ارائه شده از سوی سازندگان و کدهای استاندارد.

 

    • طراحی تنش ایجاد شده در نازل مخازن در محل اتصال به سیستم لوله‌کشی بر اساس مقادیر مجاز ارائه شده از سوی سازندگان و کدهای استاندارد.

 

    • محاسبه و طراحی بار وارد بر تکیه‌گاه به منظور انتخاب نوع و سایز کردن‌ها.

 

    •  تعیین جابجایی­های سیستم لوله‌کشی برای بررسی این مقادیر در نقاط اتصال به تجهیزات و سایر نقاط.

 

    • بررسی مسائل دینامیکی موجود در سیستم لوله‌کشی.

 

  • کمک به بهبود طراحی سیستم.

 

کد BS 7159 ، ضرایب انعطاف پذیری و تشدید تنش(k,i)  خم ها و سه‌راهی­ها[2] را محاسبه می‌کند تا آنها را در آنالیز انعطاف پذیری به کار برد.با بهره گرفتن از کد BS 7159 که در جدول پیوستی آمده است می‌توان اطلاعات انعطاف پذیری برای خم ها وسه‌راهی ها را بدست آورد.
1-4تقسیم بندی خطوط لوله 
از آنجایی که تمام خطوط یک پروژه، نیازمند آنالیز کامپیوتری نیستند، باید معیاری برای انتخاب خطوط لوله جهت تحلیل تنش ارائه داد. با توجه به طبقه‌بندی خطوط در مدرک piping stress Analysis specification ، وضعیت آن‌ ها برای آنالیز، همین‌طور روش آنالیز در مورد آن‌ ها مشخص خواهد شد. خطوط لوله بر اساس سه فاكتور مهم (دما، اتصال به تجهیزات و سایز لوله) به سه سطح غیر بحرانی، نیمه بحرانی و بحرانی تقسیم می شوند.

 

 

  • خطوط غیربحرانی: (Grade A)

 

عمدتا خطوط لوله با دما و سایز پایین، در این دسته قرار می‌گیرند و آنالیز آن‌ ها با نرم افزار و حتی دستی هم انجام نمی‌گیرد. مهمترین نیروی موجود در آن‌ ها نیروی وزن است. در این خطوط از طریق آنالیز چشمی[3] می توان محل و نوع ساپورت‌ها را مشخص نمود. 

 

 

  • خطوط نیمه بحرانی: (Grade B)

 

 خطوطی هستند كه نیاز به محاسبه نرم افزاری دارند ولی اهمیت آن‌ ها از دسته سوم كمتر است. در این خطوط نوع و موقعیت ساپورت‌ها  تعیین شده و به گروه اجرای ساپورت ارائه می گردد و فقط  نوع ساپورت در نقاط مربوطه روی نقشه ایزومتریک مارك می شود و  در نهایت به بخش طراحی جهت ورود اطلاعات بازگردانده می شود. در این خطوط نیازی به دادن گزارش آنالیز تنش به كارفرما نمی باشد. 

 
مداحی های محرم