وبلاگ

توضیح وبلاگ من

دانلود پایان نامه ارشد: تحلیل عددی رفتار انواع نانوسیال در حفره ­های بلند


هدف از انجام این تحقیق شبیه­سازی جریان جابجایی طبیعی نانوسیال است. بر این اساس و به منظور آشنایی بیشتر با ویژگی­های این تحقیق، نیاز به درک بهتر مفاهیم مطرح شده مثل جابجایی طبیعی، خواص نانوسیال و جریان نانوسیال است. این فصل هر یک از مفاهیم فوق را به­ طور جداگانه معرفی کرده و ویژگی­ها و پیچیدگی­های آن­ها را به شکل اجمالی مطرح می­نماید.
1-1- جابجایی طبیعی
یکی از مسایل بسیار مهم در مکانیک سیالات حرکت سیالات در طبیعت و صنعت است که مهندسان همه­ روزه با آن سروکار دارند. برخی از جریانات حاصل از جابجایی طبیعی[1] ناشی از نیروی ارشمیدس است. در مبحث انتقال حرارت صفت “طبیعی“، به جریان­هایی اختصاص می­یابد که نتیجه اختلاف چگالی جرمی هستند، درحالیکه وقتی جریان در اثر گرادیان فشار و یا شرایط مرزی سرعت اتفاق می­افتد، جابجایی اجباری[2] اصطلاح مناسب­تری است. بعضی از نویسندگان و محققین، بین جابجایی طبیعی داخلی (در محوطه بسته) و خارجی (اطراف اشیا) دچار اشتباه می­گردند. الگو­های رفتاری این دو متفاوت از هم بوده و دومی جابجایی آزاد[3] نیز نامیده می­ شود. اختلاف چگالی در اثر اختلاف فاز، اختلاف غلظت و یا دما ایجاد می­ شود. حباب­های بخار در آب نمونه ­ای از حالت اول هستند. قانون ارشمیدس بیان می­ کند که نیروی خالص به طرف بالا که به حباب وارد می­ شود، برابر است با شتاب جاذبه ضرب­ در اختلاف بین جرم جابجا شده از آب و جرم بخار حباب، که این نیروی شناوری باعث بالا رفتن حباب می­ شود. حرکت­های نفوذی نمونه ­ای از حالت دوم هستند که در آن، طبیعت سعی می­ کند غلظت محلول را در جهت ماکزیمم کردن آنتروپی یکسان کند. مسأله­ای که در پیش روست، مثالی برای حالت سوم است که از این به بعد به بررسی آن پرداخته می­ شود. به عنوان بخشی از کاربردهای صنعتی و مهندسی و نمونه­های عملی این جریان، می­توان به موارد زیر اشاره کرد:
 جابجایی هوا و تهویه در داخل بناها و ساختمان­ها، تانکرهای ذخیره مایعات، ساختار سلول­های خورشیدی، خنک کاری تجهیزات الکترونیکی، انتقال حرارت طی رشد کریستال­ها و جریان بین دیواره­ های رآکتور هسته­ای.
می­دانیم وقتی قسمتی از سیال نسبت به قسمت دیگر گرم­تر باشد، منبسط شده و چگالی آن کم می­ شود. به همین دلیل است که گردابه­های حرارتی در اتمسفر و اقیانوس­ها ایجاد می­گردند و یا بالن­هایی که با هوای گرم پر می­شوند، بالا می­روند.  جابجایی­های طبیعی به دو دسته تقسیم می­گردند که هر کدام با الگو­های رفتاری خاصی مشخص می­شوند. اولین دسته که “گرمایش از سطح زیرین”[4] نام دارد، در اثر حرارت دادن یک صفحه زیرین که سیال سردتری در روی آن در جریان است، ایجاد می­گردد. مشخصه اصلی این دسته، وجود ساختارهای بزرگ و منسجم در سیال مانند پلوم­ها[5]، سلول­های حرارتی[6] و سلول­های رایلی-بنارد[7] است. دومین دسته به “گرمایش

دانلود مقاله و پایان نامه

 از کناره­ها”[8] معروفند که صفحه عمودی گرم ساده­ترین مثال این دسته به شمار می­رود. مشخصه اصلی این دسته هم گرادیان­های شدید دما و سرعت در لایه ­های مرزی است.

امروزه، تحقیقات مکانیک سیالات در این خصوص به دو زمینه مطالعاتی محدود می­ شود. زمینه مطالعاتی اول اندازه ­گیری تجربی داده ­های جریان و دیگری، شبیه سازی عددی معادلات ریاضی حاکم بر جریان است. مطالعه در هر کدام از این زمینه­ها مشکلات مخصوص به خود را دارد. کار تجربی از نااطمینانی­هایی که در شرایط مرزی وجود دارد و همچنین مشکل اندازه واقعی مدل رنج می­برد و معمولا پر هزینه­تر از روش عددی است. هر چند برای اثبات درستی روش عددی و بدست آوردن فرضیات و ثوابت تجربی، روش تجربی همواره لازم است. اما اگر یک مدل عددی برای حالت خاصی به کمک داده ­های تجربی تأیید شود، نتایج آن مدل برای حالت­های مشابه نیز قابل استناد است، بدون اینکه برای آن حالت­ها نیاز به هزینه کار تجربی باشد و این نقطه قوت شبیه سازی عددی است.
2-1- نانوسیال
گرمایش و سرمایش یک سیستم توسط سیال در بسیاری از صنایع مانند صنایع الکترونیک، نیروگاه­ها، دستگاه­های نوری ،آهنرباهای ابر رسانا، کامپیوتر­های فوق سریع، موتورهای ماشین و بسیاری از کارخانجات از اهمیت زیادی برخوردار است. تمامی سیستم­های خنک کننده وگرمایشی بر پایه انتقال حرارت طراحــی می­شوند. با توجه به این امر توسعه تکنیک­های موثر انتقال حرارت با توجه به محدودیت منابع طبیعی و تمایل به کاهش هزینه­ها بسیار ضروری می­باشد. بطور معمول سیستم­های خنک کننده با هوا بیشتر مورد استفاده قرار گرفته و قابل اطمینان­تر هستند. اما زمانیکه نیاز به شار حرارتی[1] بالا و انتقال حرارت سریع وجود دارد، از مایعاتی مانند آب، اتیلن گلیکول و مایعات مناسب دیگر استفاده می­ شود که محدودیت حرارتی دارند. سیالات معمول مورد استفاده برای انتقال حرارت دارای ضریب رسانش حرارتی پایین می­باشند، در حالی که فلزات دارای رسانش حرارتی بالاتر از سه برابر اینگونه سیالات می­باشند. بنابراین استفاده از ذرات جامد فلزی و ترکیب آن­ها با اینگونه سیالات برای افزایش ضریب رسانش حرارتی و در نتیجه افزایش راندمان حرارتی بسیار مطلوب به نظر می­رسد.
ماکسول در سال 1881[2] [1] برای اولین بار بحث افزایش ذرات جامد به سیال را مطرح کرد و رابطه­ای برای ضریب رسانش حرارتی مخلوط سیال خالص و ذرات جامد ارائه نمود. سالها استفاده از سوسپانسیون سیال و ذرات جامد بسیار کوچک در ابعاد میکرو مورد توجه محققین بوده است. اما این سیالات با ذرات جامد معلق در حد میکرومتر[3] مشکلات فراوانی مانند رسوب گذاری، ناخالصی، خوردگی و افزایش افت فشار و… داشته اند تا اینکه ابتدا ماسودا و همکاران [2] و سپس چویی [3] ایده نانوسیال[4] را برای اولین بار مطرح نمودند و انقلاب بزرگی در زمینه انتقال حرارت در سیالات پدید آوردند. همچنین به مقدار زیادی خوردگی، ناخالصی و مشکلات افت فشار به دلیل کوچک بودن ذرات کاهش پیدا کرد و از طرفی پایداری برخی سیالات در مقابل رسوب­گذاری بطور چشم­گیری بهبود یافت. نانوتکنولوژی بطور کلی معرف روش جابجایی تک­تک اتم­ها و آرایش آن­ها به صورت دلخواه می­باشد. به همین سبب اندازه و ابعاد کاری این مجموعه بسیار کوچک­اند که البته پیشوند نانو بیانگر حدود این فناوری است. نانوسیال عبارت است از ذرات بسیار ریز جامد در ابعاد بین 1 تا 100 نانومتر[5] معلق در یک سیال پایه. بطور معمول نانوذرات از جنس فلزاتی مانند مس، آلومینیوم، پتاسیم، سیلیسم و اکسیدهای آن­ها و سیالات پایه نیز عمدتا از سیالات با رسانایی پایین مانند آب، اتیلن گلیکول و سیالاتی از این دسته که در صنعت به عنوان هادی انتقال حرارت مورد استفاده قرار می­گیرند، می­باشند. در سال­های اخیر افزایش ذرات جامد به سیال به دلیل افزایش خواص حرارتی سیال و در نتیجه افزایش انتقال حرارت مورد توجه بسیاری از محققین قرار گرفته است. تحقیقات محققین نشان می­دهد که ضریب رسانش حرارتی در نانوسیال حدود 15 تا 40 درصد و راندمان حرارتی حدود 40 درصد نسبت به سیال پایه افزایش می یابد [4].
[1] Heat Flux
[2] Nano Fluid
[3] Micrometer
[4] Nano Fluid
[5] Nanometer
[1] Natural Convection
[2] Forced Convection
[3] Free Convection
[4] Heating-from-below
[5] Plumes
[6] Thermal Cells
[7] Rayleigh-Benard
[8] Heating-from-the-side

دانلود پایان نامه ارشد: حل جریان جابجایی آزاد گذرا حول کره با استفاده از DQ-IDQ


یکی از پدیده­های انتقال حرارت، جابجایی آزاد یا طبیعی است. تغییر چگالی­ای که بواسطه­­ی گرادیان دما ایجاد می­ شود منجر به جاری شدن سیال می­گردد. حرکت سیال در جابجایی آزاد در مجاورت یک سطح در نتیجه­ نیروهای شناوری است که به واسطه­ گرادیان دما  اعمالی بر سیال در نزدیکی سطح و تغییرات چگالی سیال می­باشد. نیروهای شناوری که موجب جریان­های جابجایی آزاد می­شوند را نیروهای حجمی[1] می­گویند. تاریخچه­ی تحقیقات اولیه­ی که این جریان را در نظر گرفتند، به یک صده قبل باز می­گردد. از آن زمان تاکنون داده ­ها، روابط و تحلیل­هایی که بر این جریان حاکم می­باشند با رشد فوق­العاده­ی افزایش پیدا کرده ­اند. علاقه­ بی­شماری که بشریت به این پدیده نشان می­دهد، بازتاب نیاز فوق­العاده­ی است که بشر به این پدیده­ جالب و حیاتی احساس می­کرده است. اهمیت و تنوعی که در بکارگیری این پدیده در صنعت و محیط اطراف به چشم می­آید، نشان بر کاربرد گسترده­ی این پدیده دارد. این پدیده گاه به تنهایی و گاه با ترکیب شدن با سایر پدیده­های انتقال در انتقال حرارت و جرم بکار گرفته شده است.
از طرفی با توجه به اینکه سیستم­های واقعی فیزیکی یا مسائل مهندسی که بواسطه­ این پدیده ایجاد می­شوند به کمک معادلات پاره­ای توصیف می­شوند، در اکثر حالت­ها، حل بسته­ی[2] آن­ها فوق­العاده سخت است. بدین سبب، روش­های تقریبی عددی به صورت گسترده­ای برای حل این معادلات، مورد استفاده قرار می­گیرند. بیشترین روش­های عددی که برای حل این­گونه مسائل به کار گرفته می­شوند، روش­های المان محدو­د[3]، تفاضل محدود[4] و حجم محدود[5] می­باشد این سه روش جز روش­های مرتبه­ی پایین طبقه ­بندی می­شوند. روش­های مرتبه­ی پایین برای بدست آوردن دقت کافی در محاسبات نیازمند تعداد گره­های محاسباتی بالایی هستند. در مسایلی که چند بعد محاسباتی دارد نیاز به ظرفیت محاسباتی بالا برای حفظ دقت محاسبات بیشتر نمود پیدا می­ کند. بنابراین محققین تلاش­ هایی به منظور دست­یابی به روش­هایی که با تعداد گره­های محاسباتی کم، منجر به نتایجی با دقت بالا گردند را آغاز کردند. از این روش­ها تحت عنوان روش­های مرتبه­ی بالا یاد می­ شود. از جمله­ ماحصل این تلاش­ها می­توان به روش­های طیفی[6] و مربعات دیفرانسیل[7] اشاره کرد. همان­گونه که گفته شد یکی از مزایای این روش دست­یابی به دقت محاسباتی مناسب در عین کم بودن تعداد گره­های محاسباتی است.
روش مربعات دیفرانسیل برای اولین بار توسط ریچارد بلمن و همکارنش در اوایل دهه­ 70 میلادی به کار گرفته شده است. روش مربعات دیفرانسیل برگرفته شده از روش انتگرال­گیری مربعی[8] می­باشد. در این روش مقدار مشتق تابع در هر نقطه را با بهره گرفتن از مجموع حاصل­ضرب مقادیر تابع در مقادیر وزنی مرتبط در طول راستای مورد نظر تقریب می­زنند. نکته­ی کلیدی در بکار بردن این روش، تعیین ضرایب وزنی است. بدلیل محدودیت­هایی که در اعمال روش­های اولیه­ی تعیین ضرایب وزنی وجود داشت، این روش تا سال­های متمادی کمتر مورد استفاده قرار گرفت. تا این­که پژوهش­هایی که محققین در اواخر دهه­80 و اوایل دهه­ 90 به منظور پیدا کردن ضرایب وزنی ساده­تر انجام دادند، منجر به معرفی این روش به عنوان ابزار عددی قدرتمندی در دو دهه­ اخیر شد.
با افزایش استفاده از این روش در سالیان اخیر محققین بنا به نیازی که احساس می­کردند، روش­های دیگری را از روش مربعات دیفرانسیل استخراج کردند که یکی از این روش­ها مربعات دیفرانسیل تکه­ای[9] است. این روش در مسایلی که تغییرات گرادیان متغییری شدید و یا در مسایلی با شرایط مرزی متغیر، کارایی بالایی دارد. ایده­ روش مربعات دیفرانسیل تکه­ای در سال 2006 در مدل­سازی امواج در آب­های کم عمق بکار گرفته شد. اصول این روش بر پایه­ تکه تکه کردن دامنه­ محاسباتی بر زیر دامنه­ها و اعمال روش مربعات دیفرانسیل بر هر زیر دامنه است.
در این پایان نامه جریان جابجایی آزاد گذرا حول کره با ترکیب دو روش مربعات دیفرانسیل و مربعات دیفرانسیل تکه­ای مورد بررسی قرار گرفته شده است.
2-1- مروری بر کارهای گذشته
جابجایی آزاد بدلیل کاربرد گسترده­ی که در صنعت و در محیط پیرامون بشر دارد بسیار مورد توجه قرار گرفته است. از طرفی با توجه به معادلات پاره­ای حاکم بر این پدیده و مشکل بودن ارایه­ی یک حل تحلیلی برای معادلات حاکم بر این جریان، بشر مجبور به استفاده از روش­های عددی برای حل این جریان شده است. از طرفی، حل عددی معادلات حاکم بر جابجایی آزاد دارای پیچیدگی­هایی است. علت این امر وابسته بودن معادله­ مومنتم به معادله­ انرژی از طریق نیروی بویانسی است و بنابراین می­بایست معادله­ انرژی و مومنتم باید همزمان حل شوند. از طرفی یکی از عوامل اثر گذار در پیچیده­تر شدن معادلات هندسه­ی است که جریان بر روی بررسی می­ شود. به عنوان مثال جریان بر روی کره نسبت به جریان برروی هندسه­های چون صفحات اعم از افقی، عمودی یا مایل و حتی استوانه­های با همین وضعیت پیچیده­تر می­باشد.
 در ادامه تعدادی از تحقیقاتی که جریان بر روی هندسه­هایی چون کره را بررسی کرده ­اند، معرفی می­شوند. گارنر و گرفتن ]1[ به بررسی اثر انتقال جرم بر روی کره­ی غیر متخلخل پرداختند. آماتو و چی ]2[ به بررسی اثر جابجایی آزاد اطراف کره­ی غوطه­ور در آب پرداختند. برومهام و میهو]3[ جریان جابجایی آزاد هوا را بر روی کره بررسی کردند.  گیولا و کورنیش ]4[ با بهره گرفتن از روش عددی تفاضل محدود[1] به بررسی جریان و انتقال حرارت اطراف کره پرداختند. سینگاه و حسن ]5[ به بررسی جریان جابجایی آزاد در اطراف کره با گراشف­های پایین پرداختند.  هیوانگ و چن ]6[با بهره گرفتن از روش عددی تفاضل محدود اثر مکش و دمش بر روی کره را بررسی کردند. چن و چن ]7[جریان جابجایی آزاد سیال غیرنیوتنی اطراف کره و استوانه با بهره گرفتن از روش رانگ کوتا[2] مرتبه­ی چهار مورد مطالعه قرار دادند. جعفرپور و یووانوویچ  ]8[ با بهره گرفتن از سری­ها یک حل نیمه تحلیلی برای جریان جابجایی آزاد بر روی کره­ی همدما ارائه دادند. جیا و گوگس ]9[ جریان جابجایی آزاد اطراف کره­ی همدما را بررسی کردند. نظر و همکاران ]10[جریان جابجایی آزاد سیال میکروپولار[3] در اطراف کره با شار ثابت مطالعه کردند. ایشان با استفاده روش عددی کلرباکس[4] به حل این مساله پرداختند. نظر و همکاران ]11[ در ادامه کار قبل جریان جابجایی آزاد سیال میکروپولار در اطراف کره­ی همدما با بهره گرفتن از همان روش قبل بررسی کردند. مولا و همکاران ]12[ به بررسی اثر تولید حرارت بر جریان جابجایی آزاد در میدان مغناطیسی اطراف کره پرداختند. چنگ ]13[ انتقال حرارت و انتقال جرم جریان جابجایی آزاد اطراف کره­ در مجاورت سیال میکروپولار را با بهره گرفتن از روش جمع­آوری اسپیلاین مکعبی[5]  بررسی کرد. بگ و همکاران ]14[ به بررسی اثر جذب و تولید حرارت بر جابجایی آزاد اطراف کره درون میدان مغناطیسی که در محیط متخلخلی قرار دارد، پرداخته­اند.
تمامی تحقیقات بیان شده، جریان جابجایی آزاد اطراف کره در حالت دایم را بررسی کرده ­اند. با توجه به اهمیت جریان در مدت زمانی که جریان به حالت دایم برسد و واقعی­تر بودن جریان گذرا این جریان مورد توجه پژوهشگرانی واقع شد. از جمله تحقیقاتی عددی یا آزمایشگاهی که جریان خارجی گذرا بر روی هندسه­های مختلف بررسی کرده ­اند، می­توان به کارهای ]15-23[ اشاره کرد. از جمله پژوهش­هایی که به بررسی جریان جابجایی آزاد گذرا اطراف هندسه­هایی همچون کره پرداخته­اند می­توان به کارهای پژوهشگران زیر اشاره کرد. اینگهام و همکاران ]24[ به بررسی جریان جابجایی آزاد گذرا اطراف سطوح همدمای سه بعدی در گراشف­های بالا پرداختند. یان و همکاران ]25[ به بررسی جریان جابجایی آزاد گذرا اطراف کره در محیط متخلخل دارسی پرداختند و از روش تفاضل محدود برای مدلسازی خود استفاده کردند. سانو و مکینزو ]26[  جریان جابجایی گذرا را اطراف کره در محیط متخلخل در پکلت­های پایین بررسی کردند.  تخر و همکاران ]27[  به بررسی جریان جابجایی آزاد گذرا اطراف کره­ی چرخنده در سیال پرداختند و برای حل این مساله از تفاضل محدود کمک گرفتند. سلوتی و همکاران ]28[ به بررسی جریان جابجایی آزاد گذرا اطراف نقطه­ی سکون جسم سه بعدی که توسط سیالی خنک می­گردد، پرداختند. نیازمند و رینکسیزبولیت ]29[ به بررسی اثر دمش بر روی کره­ی چرخنده در سیال پرداختند. آنان از حجم محدود برای حل مساله­ی مذکور استفاده کردند. چن ]30[ به بررسی جابجایی آزاد گذرا در مابین کره­ی هم مرکز و خارج از مرکز با بهره گرفتن از روش تفاضل محدود پرداخت. سم اس و ازترک ]31[ به مدلسازی جریان جابجایی اجباری اطراف قطرات سوخت در حالت گذرا پرداختند. ایشان در این مدلسازی قطرات را با کره­های همدما مدل کردند و با کمک سری­ها این مساله را حل کردند. ینگ و همکارن ]32[ به بررسی جریان جابجایی آزاد گذرا اطراف کره­ی همدما پرداختند، ایشان برای حل این مساله از روش حجم محدود استفاده کردند. سایتو و همکاران ]33[  به بررسی جریان جابجایی آزاد گذرا اطراف کره  با شار ثابت پرداختند و از روش حجم محدود برای مدلسازی استفاده کردند. ژو و همکاران ]34[ با بهره گرفتن از روش هام[6] به ارایه­ی جوابی نیمه تحلیلی برای برای جریان جابجایی آزاد گذرا اطراف سطوح خمیده­ی سه­بعدی پرداخته­اند.
از طرفی اثر جریان جابجایی آزاد تحت میدان مغناطیسی مورد توجه پژوهش­های بسیاری با گرایش ژیوفیزیک واخترفیزیک شده است. چنین مساله­ی در بررسی فرمول­های ژیوفیزیکی، اکتشاف و استحصال نفت، مراکز نگهداری زباله­های زیر زمینی و … می­باشد. از طرفی جریان­های مگنتوهیدرودینامیک[7] در مسایل مهندسی مثل سرمایش ژنراتورها، طراحی مبدل­های حرارتی، سرمایش راکتورهای هسته­ی با سدیم مایع، جریان سنج­های القایی که بر اساس تفاضل پتانسیلی عمود بر جهت حرکت جریان در سیال و میدان مغناطیسی کار می­ کنند،کاربرد دارند. پژوهشگران ]35-38[ از جمله پژوهشگرانی هستند که اثر میدان مغناطیسی بر جریان دایم روی هندسه های مختلف را بررسی کرده ­اند. در زمینه­ اثر میدان مغناطیسی بر جابجایی آزاد گذرا می­توان به کار­های زیر اشاره کرد. هلمی]39[ به مطالعه­ جریان جابجایی آزاد گذرا در محیط متخلخل بر روی صفحه­ی عمودی با دمای ثابت با بهره گرفتن از روش تفاضل محدود پرداخت. تخر ]40[  به مطالعه جریان جابجایی مرکب بر روی مخروط چرخنده با سرعت زاویه­ی متناسب با زمان در حضور میدان مغناطیسی پرداخت. وی از تفاضل محدود برای حل عددی خویش استفاده کرد. گانسن و پلانی ]41[  جریان جابجایی آزاد بر روی صفحه­ی نیمه بی نهایت عمودی درمیدان مغناطیسی را با بهره گرفتن از تفاضل محدود بررسی کردند. گانسن و پلانی ]42[ مساله انتقال حرارت و انتقال جرم جریان جابجایی آزاد گذرنده از روی یک صفحه­ی شیبدار با بهره گرفتن از تفاضل محدود را بررسی کردند. روی و انیکامور ]43[ به بررسی جابجایی مرکب گذرا از مخروط دوار که سرعت زاویه­ی آن متناسب با زمان تغییر می­ کند، پرداختند و در این حل از روش عددی تفاضل محدود کمک گرفتند. جردن ]44[ اثر اتلافات ویسکوز و تشعشع بر جریان جابجایی آزاد گذرا از روی صفحه­ی نیمه بی­نهایت عمودی مورد مطالعه قرار داد. وی از روش شبیه­سازی شبکه[8] استفاده کرد. ژو و همکاران ]45[ جریان و انتقال حرارت گذرای درون لایه­ی مرزی سیال بر روی صفحه­ی تحت میدان مغناطیسی بررسی کردند. ایشان با بهره گرفتن از روش هام برای ارایه­ی یک حل نیمه تحلیلی در رابطه با این مساله کمک گرفتند.

دانلود مقاله و پایان نامه

 الکبیر و همکاران ]46[ به بررسی جریان جابجایی آزاد از روی سطح شیب­دار درمحیط متخلخل تحت میدان مغناطیسی با بهره گرفتن از تحلیل لای گروپ[9] که یک روش نیمه تحلیلی برای حل معادلات پاره­ی است، پرداختند. دیناروند و همکاران ]47[ اثر نیروی بویانسی و میدان مغناطیسی را بر جریان گذرای لایه­ی لزج اطراف نقطه­ی سکون کره­ی چرخنده بررسی کردند. ایشان از روش هام برای حل این مساله کمک گرفتند.

اثر تولید حرارت در جریان سیال دارای حرکت در  برخی از فرایندهای فیزیکی از اهمیت شایانی برخوردار است که از آن جمله می توان به فرایندهای که حاوی واکنش های شیمیایی می باشند اشاره کرد. این اثر بر روی توزیع دما و نرخ ته نشینی ذرات اثر می­گذارد. که کاربرد این اثر را می­توان در کاربردهای مرتبط با راکتورهای هسته­ای، مدلسازی احتراق، چیپ­های الکترونیکی و… مشاهده کرد. واجراولو و هاجینیکلو ]48[ اثر اتلافات ویسکوز و تولید حرارت داخلی بر انتقال حرارت درون لایه­ی مرزی دایم بر روی صفحه­ی بی­نهایت را مورد مطالعه قرار دادند. در این تحقیق ایشان نرخ انتقال حرارت حجمی را به صورت تابع خطی با دما تقریب زدند.
 همچنین ایشان در مقاله­یشان گزارش داده­اند که تقریب خطی با دما در تقریب  برخی از فرایندهای گرمازا معتبر است. سایر محققینی که در زیر به کارهای آنها اشاره می­کنیم از جمله پژوهشگرانی هستند که بطور مستقیم و یا غیر مستقیم از مدل نرخ انتقال حرارت حجمی ]48[ استفاده کرده ­اند. چمخواه ]49[ اثر تشعشع و نیروی بویانسی را بر روی صفحه­ی مشبک با تولید و یا جذب حرارت بررسی کرد و از روش تفاضل محدود در حل این مساله استفاده کرد. یه ]50[ به بررسی اثر تولید حرارت در محیط متخلخل اطراف کره مشبک درون میدان مغناطیسی همراه با اتلافات ویسکوز و اتلافات ژول پرداخت. ایشان روش حل خود را بر مبنای کلرباکس قرار دادند. کامل ]51[ بحث انتقال حرارت و انتقال جرم گذرا بر روی صفحه­ی مشبک عمودی در محیط متخلخل تحت میدان مغناطیسی همرا با ترم تولید و جذب حرارت را مورد مطالعه قرار دادند. وی با بهره گرفتن از روش لاپلاس ترانسفورم[10] به ارایه­ی یک حل تحلیلی برای مساله­ی مذکور پرداخت. چمخواه ]52[ جریان سیال تحت میدان مغناطیسی بر روی صفحه­ی عمودی با در نظر گرفتن تولید و جذب حرارت و واکنش شیمیایی مرتبه­ی  اول را مورد مطالعه قرار داد. وی این مساله را کاملا تحلیلی حل می­ کند. ابوذهب و سالم ]53[ جریان جابجایی آزاد سیال غیرنیوتنی در میدان مغناطیسی بر روی صفحه بررسی کردند. مولا و همکاران ]54[ جریان جابجایی آزاد اطراف کره­ی همدما درمیدان مغناطیسی با در نظر گرفتن تولید حرارت را بررسی کردند. ایشان از روش کلرباکس برای حل این مساله بهره گرفتند. مولا و همکاران ]55[ در کار دیگری اثر تولید حرارت بر جریان جابجایی آزاد اطراف کره با شار ثابت در میدان مغناطیسی را بررسی کردند. روش حل در این مساله نیز کلرباکس انتخاب شده است. مولا و همکاران ]56[ جریان جابجایی آزاد اطراف استوانه­ی افقی همدما را با در نظر گرفتن ترم تولید حرارت را بررسی کردند. ایشان از دو روش نیمه تحلیلی(سری­) و عددی (بر مبنای تفاضل محدود) به مطالعه­ جریان پرداختند. هادی و همکاران ]57[ به بررسی اثر تولید و جذب حرارت بر جریان جابجایی آزاد گذرنده از یک صفحه­ی عمودی موجدار پرداختند. ایشان از رانگ­-کوتا برای حل این مساله کمک گرفتند. عالم و همکاران ]58[ اثر تولید حرارت در اطراف کره­ی درون میدان مغناطیسی را مورد مطالعه قرار دادند. برای حل این مساله از کلرباکس کمک گرفتند. محمد و همکاران ]59[ اثر تولید حرارت بر جریان سیال بر روی صفحه درون محیط متخلخل را بررسی کردند.ایشان از اصول المان محدود[11] برای حل مساله­ی مذکور استفاده کردند. ابدالخالک ]60[ اثر تولید حرارت بر جریات سیال درون محیط متخلخل تحت میدان مغناطیسی بر در حوالی نقطه­ی سکون اجسام دوبعدی را بررسی کرد. وی از روش اغتشاشات[12] برای حل این مساله کمک گرفت. مامون و همکاران ]61[ اثر اتلافات ویسکوز و تولید حرارت را بر انتقال حرارت از صفحه­ی عمودی در سیال تحت میدان مغناطیسی را بررسی کردند. ایشان از روش کلرباکس برای حل این مساله کمک گرفتند. ابراهیم و همکاران ]62[ مساله­ی جریان جابجایی آزاد گذرا از صفحه­ی مشبک تحت میدان مغناطیسی همراه با واکنش شیمیایی و تولید حرارت را به صورت تحلیلی حل نمودند. مولا و همکاران ]63[ جریان جابجایی آزاد اطراف استوانه­ی افقی شارثابت را با در نظر گرفتن ترم تولید حرارت را بررسی کردند. ایشان از دو روش نیمه تحلیلی(سری­) و عددی (برمبنای تفاضل محدود) به مطالعه­ جریان پرداختند.
در تحقیقات ذکر شده لزجت سیال ثابت در نظر گرفته شده است. واضح است که ثابت گرفتن لزجت سیال تنها فرضی به منظور ساده­سازی معادلات می­باشد و از لحاظ فیزیکی در اکثر قریب به اتفاق موارد این فرض صحیح نمی ­باشد. پس محققین به ناچار برای پیدا کردن حل دقیق­تر و فیزیکی­تر جریان به جستجوی مدل­هایی برای پیش ­بینی تغییرات لزجت سیال افتادند. از طرفی با توجه به تغییرات شدیدتری که لزجت سیال با تغییرات دما نسبت به سایر پارامترها از خود نشان می­دهد در بیشتر مدل­های در نظر گرفته شده تغییرات لزجت با دما را مشهودتر مورد بررسی قرار داده­اند. در نهایت مدل­های متفاوتی برای مدل­سازی لزجت متغیر سیال در نظر گرفته شده است. که این مدل­ها بسته به نوع سیال و خواص فیزیکی ­آن با هم متفاوت هستند. از جمله­ این مدل­ها می­توان به مدل تغییرات نمایی لزجت با دما که در پژوهش­های ]64-68[ و یا مدل تغییرات خطی لزجت با دما که در  ]69-75[ بکار گرفته شده است اشاره کرد. مدل پرکاربرد دیگری که تغییرات لزجت با دما را به خوبی نشان می­دهد و در اکثر پژوهش­ها از آن استفاده شده است، مدل تغییر لزجت با تابع  معکوس خطی تغییرات دما است. از جمله کارهایی که در این زمینه انجام شده است می­توان به کارهای این پژوهشگران اشاره کرد. یاو و کاتن ]76[  اثر ویسکوزیته­ی متغیر بر لایه­ی مرزی­ آب را روی استوانه­ی افقی بررسی کردند. ایشان از تفاضل محدود در مدل­سازی خود استفاده کردند. لینگ و دایب ]77[ اثر تغییرات ویسکوزیته را بر جابجایی اجباری از روی صفحه­ی تخت درون محیط متخلخل را بررسی کردند. ایشان از جمله­ اولین محققینی بودند که از این مدل برای طیف متنوعی از سیالات استفاده کردند و در مدل خود از تفاضل محدود استفاده کردند. کار ایشان الگوی سایر محقیقین برای مدل کردن تغییرات لزجت با دما قرار گرفت که در سایر کارهایی که در زیر به آنها اشاره می­ شود به طور مستقیم و یا غیر مستقیم از ]77[ استفاده کردند. جایانثی و کوماری ]78[ اثر ویسکوزیته­ی متغیر را بر روی جابجایی آزاد و مرکب در محیط متخلخل بصورت عددی با بهره گرفتن از کلرباکس مورد مطالعه قرار دادند. چنگ ]79[ اثر ویسکوزیته­ی متغیر را بر جابجایی آزاد بر روی استوانه­ی افقی همدما را بررسی کرد. وی از روش مجموعه­ی اسپیلاین مکعبی  برای حل این مساله استفاده کرد. مولا و حسین ]80[  به بررسی اثر ویسکوزیته­ی متغیر بر انتقال حرارت و انتقال جرم جابجایی آزاد از کره­ی همدما با بهره گرفتن از کلرباکس پرداختند. افیفی ]81[ به بررسی اثر ویسکوزیته­ی متغیر بر جابجایی آزاد از روی صفحه­ی عمودی درون محیط متخلخل تحت میدان مغناطیسی پرداخت. وی از متد تفاضل محدود برای حل معادلات پاره­ای استفاده کرد. چین و همکارن ]82[ اثر ویسکوزیته­ی متغیر را بر روی جابجایی مرکب از صفحه­ی عمودی درون محیط متخلخل بررسی کردند. ایشان برای حل معادلات لایه­ی مرزی از روش تفاضل محدود کمک گرفتند. چنگ ]83[  با بهره گرفتن از روش مجموعه­ی اسپیلاین مکعبی به بررسی اثر ویسکوزیته­ی متغیر بر جریان روی مخروط ناقص عمودی که در محیط متخلخل قرار دارد، پرداخت. احمد و همکاران ]84[ با بهره گرفتن از روش کلرباکس به حل معادلات پاره­ی لایه­ی مرزی جریان جابجایی مرکب اطراف استوانه­ی همدمای افقی با ویسکوزیته­ی متغیر با دما پرداختند.
از طرف دیگر ثابت گرفتن هدایت حرارتی سیال فرضی به منظور ساده­سازی معادلات حاکم بر جریان می­باشد و با یک سری فرضیات این تقریب می ­تواند درست باشد اما از لحاظ فیزیکی در قریب به اتفاق موارد این فرض صحیح نمی ­باشد. پس محققین برای بدست آوردن حل فیزیکی­تر جریان سعی در به دست آوردن مدلی به منظور تعیین تغییرات هدایت حرارتی سیال با دما کردند. از جمله مدلی که در این پیش بینی بسیار توسط محققین بکار گرفته شده است، مدل تغییر هدایت حرارتی سیال با دما به صورت خطی می­باشد که سلاتری ]85[ برای طیف وسیعی از سیالات آنرا پیشنهاد می­دهد.
[1] Finite Diffrence
[2] Rung-kuta
[3] micropolar
[4] Keller-box
[5] cubic spilin collection
[6] HAM(Homotopy analysis method)
[7] MHD (Magnetohydrodynamic)
[8]  ­network simulation method
[9] lie group analysis
[10] Laplace transform
[11] Finite element
[12] Perturbation method
[1] Body force
[2] Closed form
[3] Finite element
[4] Finite difference
[5] Finite volume
[6] Spectral method
[7] Differential quadrature method (DQM)
[8] Integral quadrature
[9] Incremental differential quadrature method (IDQM)

دانلود پایان نامه ارشد: رفع تنگناهای افزایش ظرفیت واحد تقطیر 100 پالایشگاه آبادان

:
هنگامی که یک شرکت پالایشی تصمیم به افزایش ظرفیت می گیرد طبیعتاً اولین واحدی که باید مورد ارزیابی قرار گیرد واحد تقطیر یا اصطلاحاً ( Topping Unit )  می باشد . سعی در برداشتن گلوگاه ها از امـکانات و قابلیت‌های موجــود کــه غالباً Retrofit Design   گفته می شود ، کم هزینه ترین و سریعترین راه جهت دستیابی به ظرفیتهای تولید بالاتر با قبـــول کمــتریـن ریسک می باشد.
بالا رفتن قیمت محصولات نفتی و به تبع آن هزینه های انرژی که به علت تحولات سیاسی و بین المللی صورت گرفته است باعث شد تا کشورهای صنعتی که بزرگترین مصرف کنندگان انرژی در جهان هستند تلاشهای بسیاری را به منظور بهینه سازی صنایع نفتی و پتروشیمیایی که بزرگترین و پر مصرف ترین صنایع از لحاظ مصرف انرژی می باشند ، انجام دهند . نتیجه این تلاشها عمدتاً به دو صورت زیر بیان می گردد:
1- کاهش مصرف انرژی به روش استفاده بهینه از انرژیهای موجود در واحد صنعتی مورد بحث
2- تجدید نظر در طراحی و ساختار واحدهای نفتی و پتروشیمی
معمولاً در روش اول نیازبه انجام تغییرات اساسی در ساختار واحد نمی باشد لذا هزینه های انجام شده کمینه خواهد بود . در حالیکه در روش دوم غالباً نیاز به انجام یک سری تغییرات جهت دستیابی به هدف مورد نظر می باشد .
در این بحث ابتدا مروری بر تئوری موجود در تقطیر معمولی خواهیم داشت. آنگاه به شرح تقطیر پیشرفته (Progressive distillation) و روش های ممکن جهت اِعمال و به کارگیری آن (در واحد تقطیر 100 پالایشگاه آبادان) خواهیم پرداخت. سپس با انجام شبیه سازی شرایط مختلف فرایندی و میزان مصرف انرژی را در دو حالت تقطیر معمولی و پیشرفته مقایسه خواهیم کرد. همچنین توضیح مختصری در رابطه با شبیه سازی و نحوه انجام آن برای واحد مورد بحث داده خواهد شد.
فصل اول: تقطیر نفت خام
1-1- تقطیر نفت خام
دستگاه های تقطیر نفت خام ، نخستین واحدهای فرآورش عمده در پالایشگاه هستند . این دستگاه ها برای تفکیک نفت خام به روش تقطیر به اجزایی بر حسب نقطه جوششان به کار  گرفته  می شوند ، بدین ترتیب که منابع خوراک هر یک از واحـدهای فــرآورش بعـدی با توجه به مشخصه های مورد نیازشان تهیه می شوند . به منظور دستیابی به بازدهی های بالاتر و هزینه های پایینتر ، تفکیک نفت خام در دو مرحله صورت می گیرد:
– مرحله اول تفکیک جزء به جزء همه نفت خام در فشار جو
– مرحله دوم ارسال باقیمانده دیر جوش مرحله اول به دستگاه تفکیک دیگری که تحت خلأ شدید عمل می کند.
از دستگاه تقطیر در خلأ ، برای جداسازی قسمت سنگینتر نفت خام به اجزاء مختلف استفاده می شود ، زیرا دمای بالایی که برای تبخیر این قسمت سنگین در فشار جو لازم است موجب کراکینگ گرمایی آن می شود که خود موجب ضایعات ناشی از تولید گاز خشک ، و همچنین تغییر رنگ محصول و قشر بستن تجهیزات براثر تولید کک می شود .
نقاط برش بخشهای نوعی و گستره های جوش بخشهای حاصل از دستگاه های تقطیر در فشار اتمسفری و تقطیر در خلأ در جداول ( 1 – 1 ) و ( 1 – 2 ) ارائه شده اند.
روابط بین نقاط جوش متوسط حجمی ، متوسط مولی ، و متوسط میانگین اجزاء نفت خام در شکلهای زیر  نشان داده شده است.
2-1- نمک زدایی از نفت خام
چنانچه نمک موجود در نفت خام از  10 lb/ 1000 bbl  ( بر حسب مقدار NaCl  ) بیشتر باشد ، نفت خام باید نمک زدایی شود تا از قشر بستن و خوردگی براثر نمک در سطوح انتقال گرما و همچنین تولید اسیدها از طریق تجزیه نمکهای کلر دار جلوگیری به عمل آید . به علاوه ، برخی از فلزاتی که به صورت ترکیبات غیر آلی محلول در آب که با نفت خام تولید امولسیون نموده و سبب غیر فعال شدن کاتالیزور در واحدهای فرآورش کاتالیستی می شوند ، نیز ، در فرایند نمک زدایی حذف می شوند.
گرایشی که برای پالایش نفت خامهای سنگینتر وجود دارد ، بر اهمیت نمک زدایی مؤثر نفت خام افزوده است . معیاری که برای نمک زدایی از نفت خام تا سالهای اخیر مورد  استفاده  قرار می گرفت ، حضور 10 lb  نمک یا بیشتر ( برحسب NaCl  ) در  1000 bbl  نفت خام بوده است . ولی اکنون بسیاری از شرکتها تمامی نفت خامها را نمک زدایی می کنند . در توجیه این عمل اضافی ، کاهش قشر بستن و خوردگی دستگاه

پایان نامه

 ها و افزایش طول عمر کاتالیزور عنوان می شود . در صورتی که مقدار نمک نفت خام بیش از 20  پوند در هر هزار بشکه باشد ، از نمک زدایی  دو مرحله ای استفاده می شود ، و در مواردی باقیمانده ها به روش کاتالیستی فرآورش می شوند ، برای برخی از نفت خامها از نمک زدایی سه مرحله ای استفاده می شود .

نمک در نفت خام بصورت حل شده و یا بصورت بلورین و معلق در آب که با نفت خام امولسیون می دهد وجود دارد . اساس روش نمک زدایی از نفت خام ، شستشوی نمک موجود با آب است . در اینجا مسائلی در اختلاط مؤثر و اقتصادی آب و نفت و همچنین مرطوب سازی ذرات جامد معلق با آب و جدا سازی آب شستشو از نفت بروز می کند . pH  ، چگالی و ویسکازیته نفت خام  و همچنین نسبت حجم آب شستشو به حجم نفت خام در سهولت تفکیک و بازدهی مؤثرند .
دومین هدف مهم از نمک زدایی ، حذف مواد جامد معلق در نفت خام است . این مواد معمولاً عبارتند از : ذرات ریز ماسه ، رس ، خاک و ذرات اکسید آهن و سولفید آهن جدا شده از خطوط لوله ، مخازن و نفت کشها ، و سایر منابع آلاینده ، که در مرحله انتقال ویا بهره  برداری  وارد  نفت  خام  می شوند .  %60  و  یا  حتی  % 80 کل  ذرات  جامد  معلق  بزرگتر از  8/0  میکرون  باید حذف شوند .
نمـک زدایـی به روش اخـتلاط نفـت خـام با 3  تا  10  درصـد حجمی آب ، در دمـاهای  90 تا 150 درجه سانتی گراد انجام می شود . نسبت آب به نفت خام و نیز دمای انجام این عملیات ، توابعی از چگالی نفت خام هستند.
نمکها در آب شستشو حل می شوند ، و سپس فازهای آب و نفت در مخزن جدا کننده از هم تفکیک می شوند . این کار یا با افزودن مواد شیمیایی برای کمک به شکستن امولسیون یا از طریق ایجاد یک میدان الکتریکی با پتانسیل بالا در مخزن ته نشینی و به هم پیوستن سریعتر ریز قطره های آب نمک انجام می شود . شکلهای ( 1- 3 ) و (1- 4 )  بدین منظور می توان از جریان الکتریکی AC یا DC   استفاده کرد . اختلاف پتانسیل لازم برای بهبود به هم پیوستن ریز قطره ها حدود 14700  تا  35000  ولت است .
 با بهره گرفتن از واحدهای نمک زدایی تک مرحله می توان به بازدهی های  90  تا  95 درصد دست یافت و در مورد واحدهای دو مرحله ای بازدهی به 99 درصد نیز می رسد .
آب جبرانی به طور متوسط بین 4  تا  5  درصد حجمی نفت خام است و در نمک زدایی دو مرحله ای در مرحله دوم افزوده می شود . برای نفت خامهای بسیار سنگین  (°API<15 )  توصیه می شود که نفت گاز به عنوان رقیق کننده در مرحله دوم فرایند افزوده شود تا بازدهی جدا سازی افزایش یابد.
3-1- واحد سبک زدایی اتمسفری
نفت خام ، پس از نمک زدایی ، به داخل یک سری مبدلهای گرمایی پمپ می شود و دمای آن پس از تبادل حرارت با فرآورده و جریانهای برگشتی به 550  در جه فارینهایت می رسد سپس ،  نفت خام در کوره حرارت بیشتری می بیند تا دمایش به حدود  750  درجه فارینهایت برسد و پس از آن به منطقه سریع تفکیک کننده های اتمسفری وارد می شود . دمای تخلیه کوره به اندازه کافی زیاد است ( 650  تا  750  درجه فارینهایت ) تا موجب تبخیر تمام فرآورده های کشانده شده به بالای منطقه تبخیر آنی ، به علاوه حدود 10  تا  20  درصد باقیمانده های ته برج شود . این 10  تا  20  درصد تبخیر اضافی موجب می شود تا در سینیهای بالای منطقه تبخیر آنی ، نوعی تفکیک اجزاء به کمک جریان باز روانی درونی ، مازاد بر جریانهای خروجی ، صورت پذیرد .
جریان بازروانی به چند طریق زیر قابل انجام است:
– از طریق مایع کردن جریان بخار خروجی بالای برج و باز گرداندن بخشی از آن به بالای برج ( Top Reflux ).
– خارج کردن بخشی از برش نفت سفید از برج ، خنک کردن آن در Kerosene Pump Around و باز گرداندن مجدد آن به یک سینی بالاتر.
– خارج کردن بخشی از برش نفت گاز از برج ، خنک کردن آن در Gas Oil Pump Around و باز گرداندن مجدد آن به یک سینی بالاتر.
هر یک از فرآورده های جانبی که از برج خارج می شود ، مقدار جریان بازروانی در پایین منطقه خروج جریان را تقـلیل می دهد . جریان برگشتی بیشینه و تفکیک بیشینه  موقعی  تحقق  می یابد که همه گرما در بالای برج دفع شود ولی چنین امری نیاز به تغذیه مایع به صورت مخروط معکوس دارد که مستلزم یک برج با قطر بسیار بزرگ در منطقه بالای برج است . به منظور تقلیل قطـر منطـقه بالای بـرج و حتـی کاهـش مقـدار مایع در طول ستون ، از جریانهای میانی ، برای گرمـا گیری اسـتفاده مـی شود تا در زیر نقاط خروج فرآورده ها جریانهای بازروانی ایجاد گردد . بـدین منـظور مایع از برج خارج شده و پس از خنک شدن در مبدلهای حرارتی به برج باز  گردانده می شود و یا اینکه تنها بخشی از مایع  ، خنک شده و به برج باز گردانده می شود . این جریان خنک ، مقدار بیشتری از بخارهای در حال صعود را مایع کرده بدین ترتیب جریان بازروانی در زیر آن نقطه را افزایش می دهد .
بازدهی انرژی عملیات تقطیر نیز با بهره گرفتن از گردش جانبی جریان بازروانی بهبود می یابد. چنانچه جریان بازروانی در چگالنده های بالای برج برای کلیه جریانهای جانبی خروجی کافی باشد همه انرژی گرمایی در دمای نقطه جوش جریان بالای برج مبادله می شود . با بهره گرفتن از گردش جانبی جریانهای بازروانی در نقاط پایینتر ستون ، دمای انتقال گرما بالاتر رفته مقدار بیشتری از انرژی گرمایی را می توان به منظور پیش گرم نمودن خوراک ، دفع کرد .
در برج  تقطیر نفت خام ،  معمولا ً از کمک  گرم کن  ( Reboiler )  استفاده  نمی شود ، غالباً چند سینی در زیر منطقه تبخیر آنی تعبیه می شود تا با تزریق بخار آب از پایین ترین سینی، نفت گاز باقیمانده در مایع ته برج از آن خارج شود و بدین ترتیب ، جریان خروجی پایین برج با نقطه اشتعال بالا بدست آید . بخار آب ، موجب کاهش فشار جزئی هیدروکربنها می شود و بنابر این دمای تبخیر مورد نیاز نیز تقلیل می یابد .
برج تقطیر اتمسفری ، معمولاً دارای 30  تا  50  سینی تفکیک است . جدا کردن مخلوطهای مرکب از نفت خام ، نسبتاً  به آسانی انجام می شود و معمولاً از  5  تا  8  سینی برای هـر محصول جانبی ، به علاوه همین تعداد سینی در بالا و پایین سینی خوراک ، ضروری است . بنابر این یک برج اتمسفری تقطیر نفت خام با  4  جریان جانبی خروجی به 30  تا 45  سینی نیاز خواهد داشت .
چون مواد سبکتر وارد مواد سنگینتر می شوند و با آنها در هــر سـینی در  حـال  تعـادل  می باشند لذا جریانهای مایع جانبی که از برج خارج می شوند ، مقداری مواد با نقطه اشتعال پایین به همراه خواهند داشت و به این ترتیب نقطعه اشتعال مایعات خروجی از ستون را کاهش می دهند.   در یک برج عریان سازی شامل 4  تا  10  سینی ، این مواد سبک به کمک بخار آب تزریق شده از سینی پایینی ، از جریان جانبی جدا می شوند . بخار آب و مواد سبک به منطقه تبخیر برج اتمسفری ، در بالای نقطه خروج جریان جانبی مربوطه باز گردانده می شوند. شکل ( 1 – 6 )
پنتان و مواد سنگینتری که از بالای برج خارج شده اند در چگالنده بالای برج تقطیر اتمسفری مایع می شوند . این بخش که بنزین سبک جریان بالای برج را تشکیل می دهد ، دارای مقداری پروپان و بوتان و عمدتاً همه مواد دیر جوشتر موجود در فاز بخار بالای برج می باشد . بخشی از این مایع به عنوان مایع بازروانی به بالای برج باز گردانده می شود و بقیه به قسمت تثبیت واحد صنعتی گاز پالایشگاه فرستاده می شود و در آنجا پروپان و بوتان از بخش  ( C5 – 180 °F )   بنزین  LSR  جدا می شوند .

پایان نامه ارشد: طراحی بهینه پارتوئی مکانیزم شش میله ای برای تولید مسیر با استفاده از الگوریتم های تکاملی


1-1- پیشگفتار
مکانیزم یک ابزار مکانیکی است که به منظور انتقال حرکت و یا نیرو از یک منبع به یک خروجی بکار می­رود. یک اهرم بندی تشکیل شده است از اهرم­ها (یا میله­ها) که به طور عمومی صلب در نظر گرفته می­شوند و توسط اتصالاتی از قبیل پین (لولا) یا لغزنده­های منشوری بطوری که زنجیره­های (حلقه­های) باز یا بسته را می­سازند، به یکدیگر وصل می­شوند. این چنین زنجیره­های سینماتیکی که حداقل یک اهرم آن ثابت و حداقل دو اهرم دیگر متحرک باقی بماند، مکانیزم نام دارد و اگر کلیه اهرم ها ثابت باشند، آنگاه سازه نامیده می­ شود. به عبارت دیگر مکانیزم اجازه می­دهد اهرم­های “صلب” آن نسبت به یکدیگر حرکت داشته باشند. در حالی که برای سازه این چنین نیست.
زنجیره­های سینماتیکی بخش مهم از مکانیزم­ ها هستند که تحقیقات در زمینه آنها به دو بخش 1- آنالیز و 2- سنتز تقسیم می­ شود.
1- آنالیز: فرایند بررسی حرکت همه اعضا و یا بعضی از اعضای زنجیره بر اساس پارامترهای هندسی مکانیزم می­باشد.
2- سنتز: پیدا کردن یک مکانیزم که بتواند یک حرکت معین یا مسیر دلخواه را ایجاد نماید.
بطور­کلی، سنتز مکانیزم­ ها به سه بخش متفاوت: 1- سنتز نوع 2-سنتز عددی 3-سنتز ابعادی تقسیم می گردد. دو سنتز اول مربوط به نوع مکانیزم و تعداد اعضای مورد نیاز برای حرکت مکانیکی بخصوص هستند. در حالی که هدف از سنتز ابعادی پیدا کردن همه پارامتر­های ابعادی یک مکانیزم برای ایجاد حرکت دلخواه می­باشد. هدف ما در این تحقیق سنتز ابعادی برای یک مسیر مورد نظر می­باشد.
در بررسی ابعادی سه مسئله مهم مورد بررسی قرار می­گیرد که عبارتند از:
1- تولید ابعاد: هدف پیدا کردن مکانیزم برای ایجاد یک دسته از زوج­ها و خروجی معین می­باشد.
2- تولید مسیر: هدف پیدا نمودن یک مکانیزم برای عبور عضو واسط از نقاط معین است.
3- هدایت جسم صلب: هدف پیدا نمودن مکانیزم برای عبور عضو واسط از موقعیت­های معین شده برای آن، بعنوان یک جسم صلب است.
برای سنتز یک مکانیزم گاهی از روش­های دقیق و گاهی از روش های تقریبی استفاده می­گردد. سنتز دقیق به معنی حل معادلات حاکم بر مسئله به صورت دقیق می­باشد و در سنتز تقریبی هدف حداقل کردن خطا برای این معادلات می­باشد که سنتز بهینه اختصاص به این روش دارد.
2-1- تاریخچه سنتز ابعادی
سنتز ابعادی بخش اصلی فرایند طراحی و اولین قدم در طراحی ماشین می­باشد. به همین خاطر بیش از صد سال است که سنتز مکانیزم­ ها،

دانلود مقاله و پایان نامه

 توجه بسیاری از طراحان را به سمت خود جلب کرده است. هر چند روش­های اولیه برای سنتز بصورت ترسیمی بودند اما بعدها این روش­ها به صورت حل دقیق تغییر یافتند.

طبیعت غیرخطی بودن معادلات سنتز مانع از رشد این روش­های دقیق برای کاربردهای مختلف می­گردید که همین امر باعث شد تا تکنیک­های عددی با ظهور کامپیوترهای پر قدرت به حل این معادلات غیرخطی کمک کنند. اگرچه روش­های عددی منجر به حل تقریبی برای این معادلات می­شدند ولی محدودیت برای تعداد متغیرهای طراحی باعث ایجاد یک مشکل اساسی شد. اواسط دهه ی 60 با گسترش تکنیک های محاسباتی و روش­های بهینه­سازی مکانیزم­ ها این مشکل اساسی برطرف گردید.
فوائد بسیاری در بکارگیری روش­های بهینه­سازی مکانیزم­ ها وجود دارد. برای مثال هیچ قیدی برای تعداد متغیر­های طراحی وجود ندارد. بنابراین ویژگی­هایی همچون قابلیت حرکت، زاویه انتقال و… را می­توان فرمول بندی کرد و در معادله به عنوان پارامترهای طراحی محاسبه نمود. در قرن نوزدهم کمپ (1876) و برمستر[1] (1888) سنتز ابعادی را در مسائل سینماتیکی بکار گرفتند. ولی در آن زمان پیشرفت کمی در این زمینه ایجاد گردید]1[.در قرن بیستم برخی از محققان تلاش خود را در زمینه سنتز سینماتیکی با توجه به شاخه خاصی از مکانیزم بکار گرفتند. بعد از جنگ جهانی دوم، هنگامی که صنعت به سرعت رشد نمود، تقاضا برای طراحی مکانیزم­ های خاص افزایش یافت. نیاز های جدید، مسائل طراحی را با بهره گرفتن از روش های قدیمی بسیار پیچیده و سخت نمود. در سال (1954) لوتیسکی[2] و شاکوزیان[3] روش حداقل مربعات را برای سنتز مکانیزم­ های فضاییRSSR  معرفی کردند]2[. و در سال (1955) فرودنشتین[4] یک روش تقریبی برای سنتز مکانیزم­ های صفحه­ای چهار میله­ای برای تولید تابع معرفی کرد]3[. این دو کار موجب ایجاد سبز فایل سینماتیکی معروف به سینماتیک مدرن شدند.
معادلات معروف فرودنشتاین و معادلات ورودی-خروجی برای مکانیزم RRRR صفحه ای در سال (1995) شکل گرفتند که بعدها برای سایر مکانیزم­ های صفحه­ای گسترش یافتند و ایجاد یک رابطه کلیدی در سنتز سینماتیکی کردند]3[. بعد از این تحقیقات، فرودنشتین و سایرین بر روی یک روش سنتز، معروف به سنتز با بهره گرفتن از نقاط دقت کار کردند و موفق شدند با بهره گرفتن از چند جمله­ای­های تقریبی حاصله از نقاط دقت، این روش را معرفی کنند. اگرچه سنتز با بهره گرفتن از نقاط دقت برای مکانیزم­ های ساده مناسب می­باشد، نواقصی همچون محدودیت تعداد متغیر­های طراحی و عدم کنترل بر روی  قید طراحی باعث عدم استفاده از این روش برای مکانیزم­ های پیچیده­تر می­گردد. اواسط دهه 60، روش­های بهینه­سازی با بکارگیری برنامه ­های محاسباتی معرفی شدند ومسائل سنتز مکانیزم­ ها را کنترل نمودند (فاکس[5] و ویلمورت[6] 1967)]4[. با افزایش پیشرفت در برنامه­ های محاسباتی بعد از جنگ جهانی دوم، کاربرد روش­های بهینه­سازی به سرعت افزایش یافت و پنجره جدیدی را بر روی روش­های قدیمی سینماتیکی باز نمود.
3-1- محاسبات اولیه در بررسی مکانیزم­ ها
تلاش محققان در مسائل مربوط به مکانیزم­ ها مربوط به دو بخش می­ شود:
1- رابطه بین متغیر­های ورودی و خروجی
2- حرکت عضو یا اعضای واسطه
مورد اول مربوط به آنالیز تولید تابع می­باشد و مورد دوم بررسی تولید مسیر و هدایت جسم صلب در طراحی مکانیزم­ ها مورد بررسی قرار می­گیرند. با بررسی بر روی خواص مکانیزم شش­میله ای که در این تحقیق به آن پرداخته می­ شود، هماننده مکانیزم پایه چهار میله ای، سه نکته عمده مرتبط با این مسائل می­توان عنوان نمود.
1- قابلیت حرکتی: که امکان دوران هر یک از عضوهای ورودی یا خروجی را بررسی می­ کند. چنانچه عضوی قادر به دوران 360 درجه باشد، به عنوان لنگ و در غیر اینصورت آونگ خواهد بود. و بر این اساس مکانیزم­ ها به چهار دسته لنگ-لنگ، لنگ-آونگ، آونگ-لنگ و آونگ-آونگ تقسیم ­بندی می­گردند.
2- بررسی شاخه: برای یک ورودی معین بیش از یک خروجی امکان­ پذیر می­باشد یا به عبارت دیگر پیکربندی­های متفاوتی برای یک موقعیت خاص می­توان مونتاژ نمود. پس خاصیت شاخه بررسی پیکر بندی­های ممکن برای این موقعیت خاص می باشد.
3- انتقال نیرو و گشتاور: برای مکانیزم شش میله­ای مورد نطر که دارای یک درجه آزادی است، این خاصیت مربوط به انتقال نیرو و گشتاور از عضو ورودی به عضو خروجی می­باشد. به دلیل اینکه هر سه خاصیت ذکر شده به هندسه و ابعاد مکانیزم مربوط می­شوند، باید در ابتدای سنتز مورد توجه قرار بگیرند.
[1] Ludwig Burmester
[2] N.I. Levitskii
[3] K.K. Shakvazian
[4] Freudenstein
[5] R.L.Fox
[6] K.D.Willmert

پایان نامه ارشد: طراحی بهینه هندسه میدان جریان در پیل سوختی پلیمری با استفاده از الگوریتم ژنتیک


1-1- پیشگفتار
دو مشكل اساسی در استفاده از سوخت‌های فسیلی كه بیش از %80 تقاضای انرژی مورد مصرف را تشكیل می‌دهند وجود دارد. مشكل اول در محدودیت آنهاست به‌طوری‌كه در آینده‌ای نزدیک این سوخت‌ها به پایان می‌رسند. براساس تخمینی كه كمپانی‌های نفتی ارائه كرده‌اند، بین سالهای 2015 تا 2030 میزان مصرف نفت خام، گاز‌طبیعی و سوخت‌های فسیلی به بیشترین مقدار خود می‌رسند و از آن پس منابع فسیلی با كاهش چشمگیری روبرو خواهند بود.
مشكل دوم در استفاده از سوخت‌های فسیلی، مشكل زیست محیطی آنان است مانند تغییرات آب‌و‌هوایی، گرم‌شدن كلی محیط، ذوب شدن یخ‌های موجود در كره زمین، ایجاد باران‌های اسیدی، نقصان لایه ازن، خرابی مناطق كشاورزی و جنگلها بعلت استخراج بیش از اندازه زغال‌سنگ از معادن و از همه مهمتر مشكل آلایندگی و آلودگی محیط زیست كه شرایط زندگی را نابسامان خواهد كرد. پیش از سال 1970، سیستم‌های انرژی هیدروژنی برای رفع این دو مشكل اساسی پیشنهاد شده بود و از آن سالها دانشمندان بسیاری در جهت بكار‌گیری این سیستم‌ها و توسعه آنان تلاش كردند.
هیدروژن یک انرژی قابل حمل با خصوصیات منحصر به فرد است. سوختی پاك با راندمان خروجی بالا، سبك و در دسترس است. یكی از خصوصیات ویژه آن، نوع كاربرد آن در فرایند‌های الكترو‌شیمی است كه می‌تواند در صورت كاربرد در پیل‌های سوختی، انرژی الكتریكی تولید كند كه در مقایسه با انرژی سوخت‌های فسیلی راندمان بسیار بالاتر و مزایای ویژه‌ای دارد. در 20 سال گذشته توسعه و بكارگیری این سیستم‌ها قوت چندانی گرفته است.
2-1- پیل سوختی چیست؟
پیل سـوختی تبدیل كننده انرژی الكترو‌شـیمی است كه انرژی شیـمیایی را به انرژی الكتریسـیته
(جریان مستقیم برق) تبدیل می‌كند. در حالت كلی یک فرایند تولید الكتریسیته از سوخت، شامل چندین گام تبدیل انرژی است كه این گام‌ها عبارتند از:
(1) سوزاندن سوخت مورد نظر و تبدیل آن به حرارت
(2) ایجاد آب جوش و بخار آب از حرارت به وجود آمده
(3) بكار گیری بخار آب ایجادی در توربین جهت تبدیل انرژی گرمایی به انرژی مكانیكی
(4) بكار گیری انرژی مكانیكی در ژنراتور و تولید جریان الكتریسیته
یک پیل سوختی تمام مراحل فوق را جهت تولید جریان الكتریسیته در یک گام خلاصه می‌كند علاوه بر اینكه هیچ نیازی به قسمت‌های متحرك ندارد. (شكل 1-1) چگونگی ایجاد جریان الكتریسیته توسط پیل سوختی را در یک گام نشان می‌دهد.
یک پیل سوختی از برخی جنبه‌ها شبیه به یک باتری است چون شامل الكترولیت و قطب‌های مثبت و منفی است و از واكنشهای الكتروشیمی، جریان الكتریسیته DC تولید می‌كند ولی برخلاف یک باتری نیازمند سوخت و اكسیژن مداوم است، همچنین الكترودهای پیل سوختی برخلاف یک باتری دستخوش تغییرات شیمیایی قرار نمی‌گیرند.
باتری‌ها به واسطه واكنشهای شیمیایی و با بهره گرفتن از موادی كه از قبل درون آن‌ ها قرار گرفته است، جریان الكتریسیته تولید می‌كنند و به همین دلیل یک باتری در صورت مصرف مواد داخل آن تخلیه می شود كه در این صورت نیازمند شارژ مجدد است البته مشروط به اینكه قابلیت شارژ مجدد را داشته باشد ولی یک پیل سوختی مادامی كه اكسیژن و سوخت به آن تزریق شود، امكان تخلیه ندارد و می‌تواند در دراز مدت كار كند. اكسیژن و هیدروژن كه از مواد مورد نیاز پیل سوختی است به وفور در دسترس است و هم به صورت خاص و هم به صورت تركیبی یافت می‌شود، مثلاٌ  هیدروژن ممكن است در تركیب با گازهایی همچون ، ، Co و … موجود باشد و یا در هیدروكربنات‌هایی مثل گاز طبیعی یا حتی هیدروكربنات مایع مثل متانول وجود داشته باشد، همچنین هوای محیط هم به اندازه كافی حاوی اكسیژن مورد نیاز پیل سوختی می‌باشد. از سوی مقابل باتری هم مزیت‌هایی نسبت به پیل سوختی دارد كه می‌توان به موارد زیر اشاره كرد:
– عدم اتلاف حرارت و آب توسط باتری ]حرارت ایجادی در باتری بسیار كمتر از پیل سوختی است[
– عدم نیاز به مدیریت سیستم در باتری
– عدم نیاز به تجهیزات زیاد و هزینه‌های جانبی سنگین
3-1- بهینه سازی پارامترهای پیل سوختی پلیمری
در حالت کلی دو نوع بهینه سازی در پیل سوختی پلیمری میتوان انجام داد  :
بهینه سازی پارامترهای فرایندی یا پارامتر های عملکردی

پایان نامه

 

بهینه سازی در طراحی و ساخت پیل
1-3-1- بهینه سازی پارامترهای فرایندی
بهینه سازی در پارامترهای متغیر شامل پارامترهایی از قبیل دما ، فشار کارکرد ، نسبت مصرف سوخت در کاتد به آند ، دمای مرطوبیت ، غلظت یا مولاریته سوخت ، سینتیک واکنش و ….. که از میان این پارامتـرها تعدادی قابل کنترل و تعدادی غیر قابل کنترل اند و یا به عبارت صحیح تر کنترل برخی از پارامــــــترها هزینه زیادی در بر داشته طوری که از کنترل آنان صرف نظر شده و به مهار کردن پارامترهای در دســترس­تر پرداخته شده است. در مقالات معمولا به بررسی چهار پارامتر از تمامی پارامترهای ممکن پرداخته شــده است که این چهار پارامتر عبارتند از :
دمای کارکرد پیل سوختی که معمولا بین 60 تا 80 درجه سانتی گراد متغیراست
درصد رطوبت پیل سوختی
میزان مصرف اکسیژن در کاتد به مصرف هیدروژن در آند
فشار سیستم در سمت آند
فشار سیستم در سمت کاتد
2-3-1- بهینه سازی در طراحی و ساخت پیل
پیل سوختی از قسمتهای مختلفی تشکیل شده است که در هر قسمت می توان بررسی هایی در جهت افزایش راندمان صورت داد که از آن جمله می توان به موارد زیر اشاره کرد :
– نوع کانال جریان آند (مارپیچ ، موازی ، سری ، موازی بلند ، شبکه ای و موازی مارپیچ)
– لایه پخش گازی آند (جنس ، میزان فشردگی)
– مواد و ضخامت لایه کاتالیست آند و کاتد
– لایه پخش گازی کاتد (جنس ، میزان فشردگی)
– سایز ابعادی کانالها در هر دو قسمت آند و کاتد (طول ، عرض و عمق کانال)
– فاصله بین دو کانال در صفحات الکترود (یا بررسی شعاع گذر)
– مواد و ضخامت غشای تبادل یونی
– نوع کانال جریان کاتد (مارپیچ ، موازی ، سری ، موازی بلند ، شبکه ای و موازی مارپیچ(
– و….
استفاده از مواد جایگزین و کار آمدتر موضوعی است که بسیاری از محققان در بررسی آن می کوشند . در حالت کلی استفاده از ابعاد مناسب ، استفاده از ماده مناسب و یک پیکر بندی صحیح برای پیل از جمله مـواردی است که در این قسمت قابل بررسی است.
پژوهشهای بســیاری در زمـینه یافتن ابعاد مناسب برای کانالهای تعبیه شده در صفحات الکتـرود موجود اسـت که به روش های مختلفی همچون تحلیلی ، تجربی ، شبیه سازی که در قالب دینامیک سیالات مورد مطالـعه قرار میگرد و ترکیب تحلیلی و تجربی به تحقیق پرداخته و هر کدام ابعادی مناسب پیشنهاد می کنند که بیــشترین راندمان در قدرت خروجی را دارا می باشند.
4-1- پژوهشهای انجام شده در مورد بهینه سازی پارامترهای فرایندی پیل سوختی پلیمری
سلیمان[1] و همکارش ]1[ در سال 2007 از روش تاگوچی که در سال 1980 توسط خود تاگوچی معرفی شد ، برای بهینه سازی پارامترهای فرایندی استفاده کردند . استفاده از این روش تعداد آزمایشـات مورد نیاز را به طرز چشـم گیری کاهش داده و این سبب کاهش هزینه ها وکوتاهتر شدن زمان آزمایش می گردد . در روش تاگـوچی دو دسته پارامـتر موجود است ، پارامترهای قابل کنترل و پارامترهای غـیر قـابـل کنترل کـه اصطلاحا به آنان پارامترهای نویز گفته میشود . آن دسته از پارامترهایی که کنترل آنان بسیار سخت و هزینه بر است نیز جزو پارامترهای غیر قابل کنترل یا نویز به حساب می آید. سلیمان و همکارش ]1[ در این آزمایشات پارامـترهای دمای کارکرد پیـل ، دمای رطوبت ، فشار کارکرد پیـل سوختی و نسـبت مصـرف سوخت در کاتد به آند را پارامترهای قابل کنترل در نظر گرفت و مقادیری را بعنوان مقادیر بهینه ارائه نمود و ادعا کرد که پیل سوختی در صورت عملکرد این مقادیر بیشترین راندمان خروجی را دارند.
بتی[2] و همكارانش ]3[ وابستگی فشار و دما را در سطح مشترك كاتالیست و غشا مورد بررسی قرار دادند. كاپادونیا[3] و همكارانش ]4[ وابستگی غشای نفیون 117 را بعنوان تابعی از دما و مرطوبیت بررسی كردند. سرید‌هار[4] و همكارانش ]5[ اثر رطوبت بر چگونگی عملكرد پیل سوختی پلیمری را تحقیق كردند و برای تحقیقات خود از یک سری آزمایشات مربوطه بهره گرفتند.
ونگ[5] و همكارانش ]6[ اثرات پارامترهای عملكردی همچون دما و … را بر راندمان پیل‌های سوختی تحقیق كردند و بصورت عملی و آزمایشگاهی تأثیر این پارامترها را در حالت‌های مختلف نشان دادند. ونگ از هیدروژن خالص برای سوخت در طرف آند و از هوای معمولی در طرف كاتد استفاده كرد.
هیون[6] و همكارانش ]7[ با توجه به آزمایشات عملی به تحقیق در مورد اثرات مرطوبیت بیرونی بر عملكرد پیل سوختی پرداختند.
هوانگ[7] و همكارانش ]8[ به بررسی میزان تغییرات راندمان خروجی در ازای تغییرات پارامترهای عملكردی پرداختند و نتیجه آزمایشات خویش را ارائه كردند.
فرنگ[8] و همكارانش ]9[ علاوه بر انجام آزمایشات عملی یک مدل تحلیلی ارائه كردند و با توجه به مدل تحلیل و آزمایشات عملی به بررسی میزان اثرات پارامترهای عملكردی و همچنین مشخصات جریان در كانال جریان گازی و لایه پخش‌كننده گاز پرداختند.
سانتارلی[9] و همكارانش ]10[ بر روی میزان مرطوبیت پیل سوختی در حالت اشباع و بدون مرطوبیت و همچنین میزان فشارهای واكنشگرها بصورت آزمایشگاهی تحقیق كرده و در نهایت نتایج خود را بعنوان مقادیر مناسب برای پارامترهای پیل سوختی درنظر گرفته و نتایج خویش را ارائه نمودند.
تیسیالنی[10] و همكارانش ]11[ یک سری آزمایشات در جهت افزایش راندمان پیل سوختی انجام دادند و در مقادیری خاص تاثیر این پارامترها را بر عملکرد پیل سوختی مورد مطالعه قرار دادند.
وهدامه[11] و همكارانش ]12[ با بهره گرفتن از یک سری آزمایشات تجربی به مطالعه اثرات فشار گاز و نرخ جریان گازی در یک پیل سوختی w500 پرداختند.
لی[12] و همكارانش ]13[ با ارائه یک مدل همدما و پایدار از پیل سوختی پلیمری به بررسی واكنش‌های پیل و شرایط بهینه عملكردی پارامترها پرداختند.
جردان[13] و همكارانش ]14[ اثر پارامترهای لایه پخش گازی را بر عملكرد پیل سوختی مورد مطالعه قرار دادند. موتو پالی[14] و همكارانش ]15[ اثرات نفوذ آب بر غشایی از جنس نفیون 115 را مورد مطالعه قرار دادند. چندین تحقیق ]18-16[ با بهره گرفتن از مدل‌های شبیه‌سازی شده از پیل سوختی پلیمری، به بررسی عملكرد سمت كاتد و عملكرد كاتالیست بعنوان تسریع بخش واكنش‌ها و همچنین مدیریت آب و حرارت در پیل سوختی پرداختند.
[1]- Soleyman
[2]- Beattie
[3]- Cappadonia
[4]- Sridhar
[5]- Wang
[6]- Hyun
[7]- Hwang
[8]- Ferng
[9]- Santarelli
[10]- Ticianelli
[11]- Wahdame
[12]- Li
[13]- Jordan
[14]- Motupally

 
مداحی های محرم