وبلاگ

توضیح وبلاگ من

موضوع: "بدون موضوع"

پایان نامه ارشد: پلی آمید و اترهای آروماتیک جدید فلوئوردار سنتز و مطالعه بر روی گرانروی محلول و حل پذیری و گرماتابی و بلورینگی

:
پلیمرهای با عملکرد بالا طبقه­ی مهمی از پلیمرها هستند که کاربردشان پیوسته در حال گسترش است که این کاربردها اغلب خواستار ترکیباتی مناسب و دارای خواصی مثل استحکام بالا، فرایندپذیری بالا ، چقرمگی، پایداری شیمیایی و حرارتی برجسته و ثابت دی­الکتریک کم می­باشند. پلی­آمیدها، پلی­ایمیدها و پلی(آمید-ایمید)ها به خاطر داشتن چنین خواصی توجه هستند اما  این دسته از پلیمرهای آروماتیک در سنتز و فراورش مشکل حل پذیری کم و دمای انتقال شیشه ­ای (Tg) بالا را دارند. امروزه پژوهش های عملی و بنیادی روی افزایش فرایندپذیری و انحلال پذیری پلی‌آمیدهای آروماتیک متمرکز شده است تا کاربرد حرفه ای و صنعتی این پلیمرها افزایش یابد که از جمله این اصلاحات می توان به واردسازی اتصالات انعطاف‌پذیر در زنجیره‌های پلیمری، تعبیه گروه های حجیم در پیکره پلیمرها، حضور حلقه های هتروسیکل و همچنین حلقه های آویزان هتروآروماتیک در ساختار پلیمرها اشاره کرد. همچنین قرارگرفتن گروه های فلوئوردار در پیکره پلیمر، حل پذیری و عملکرد الکتریکی و دی الکتریکی پلیمر را افزایش میدهد که این افزایش به علت قطبش پذیری کم ، دوقطبی جزیی پیوندهای C-F و افزایش حجم آزاد می باشد. وجود گروه های هالوژنی مثل كلر و فلوئور پلیمرها را در برابر شعله، حلال، اسید و باز مقاوم می سازد كه باعث افزایش كاربرد آنها می شوند. از مهمترین این گروه ها می توان به گروه های CF3 اشاره نمود که حضور این گروه برهمکنش های بین زنجیری را کاهش داده و با ایجاد سد چرخشی در پلی‌آمیدها حلالیت را تغییر می دهد. همچنین وجود واحدهای نفتالنی که گروه های آزادکننده الکترون مثل اتر یا آمین دارند و به عنوان یک بخش سخت با خواص فتواکتیو مطرح هستند، خواص ویژه ای به پلیمر می دهند و می توانند حل پذیری و فرایندپذیری پلیمرهای مقاوم حرارتی را بدون كاهش قابل توجه مقاومت حرارتی افزایش بدهند.
1-1- پلی‌آمیدهای آروماتیک با عملکرد بالا
توسعه پلیمرهای با عملکرد بالا از سال 1950 به منظور استفاده در صنایع هوافضا و الکترونیک آغاز شد. اصطلاح عملکرد بالا به پایداری غیرعادی به هنگام قرار گرفتن در شرایط نامساعد و ویژگی هایی که پلیمرهای معمول را بهبود میدهند، اطلاق می‌شود. عمومی ترین مشخصات پلیمرهای باعملكرد بالا و مقاوم در برابر دما ماندگاری طولانی مدت (بیشتر از 1000 ساعت در˚ C177) ، دمای تجزیه حرارتی بالای ˚ C450،  سرعت کم افت وزنی در دماهای بالا، دمای انحراف گرمایی بالا، داشتن ساختارهای آروماتیک، خواص مکانیکی عالی و وجود بخش های سخت که باعث افزایش  (بیشتر از ˚ C200) می‌شوند، می‌باشد. بطور کل پلیمرهای مقاوم حرارتی برای استفاده در دماهای بالا، باید دارای ویژگی های زیر باشند:
الف- دمای ذوب )نرم شدگی)  بالا (Tm)
ب- مقاومت در برابر تخریب اکسایشی در دمای بالا
ج- پایداری در برابر عوامل شیمیایی و تابشی
د- مقاومت در برابر دیگر فرایندهای حرارتی تخریبی )غیر اکسایشی(
مهمترین فاکتورهایی که باعث عملکرد بالا و مقاومت گرمایی پلیمرها می‌شوند عبارتند از استحکام پیوندهای اصلی، پایدارسازی رزونانسی، نیروهای پیوندی ثانویه ( پیوند هیدروژنی، واندروالس، برهمکنش های قطبی و غیره)، توزیع وزن مولکولی، تقارن مولکولی، اتصالات عرضی، خلوص، مکانیسم شکافتگی پیوند، ساختارهای بین زنجیری سخت و افزودنی ها یا تقویت كننده ها ( فیبرها، خاك رس، نانوذرات مختلف) [25].
پلی‌آمیدها در طبیعت بصورت پروتئین‌ها و الیاف طبیعی مانند ابریشم و پشم و بصورت سنتزی در الیاف مصنوعی و پلاستیك‌ها یافت می‌شوند. اولین توسعه مربوط به پلی‌آمیدها با كار كاروترز پدر شیمی پلیمر در آمریكا، در سال 1935 میلادی آغاز شد. كاروترز، با بهره گرفتن از واكنش هگزا متیلن دی‌‌آمین و آدیپیک اسید موفق به تهیه پلی‌(هگزا‌متیلن‌آدیپامید) شد كه بعدها توسط کمپانی دوپونت نام

دانلود مقاله و پایان نامه

 تجاری نایلون6،6 بر روی این پلی‌آمیدها نهاده شد.[19] پلیمرهای با عملکرد بالا بواسطه معیارهایی مثل میزان مقاوت گرمایی، استحکام مکانیکی، چگالی مخصوص پایین، قابلیت هدایت بالا، خواص گرمایی و الکتریکی بالا، و عایق بودن در برابر صدا و مقاومت شعله بالا توصیف می‌شوند. از اینرو پلی‌آمیدهای آروماتیک به دلیل خواص مکانیکی و گرمایی بالایشان به عنوان پلیمرهای با عملکرد بالا مطرح می‌شوند که در تکنولوژی های پیشرفته می‌توانند جایگزین ترکیباتی مثل فلزات و سرامیک ها گردند6-70-9-62] [.

جدیدترین، ساده ترین و معروف ترین پلی‌آمیدهای آروماتیک (آرامیدها) عبارتند از پلی پارافنیلن ترفتالامید (PPPT)  و پلی متا فنیلن ایزوفتالامید (PMPI)  که هر دوی آنها میتوانند به فیبرها سنتزی با مقاومت کششی بالا، مقاوم در برابر برش و شعله تبدیل بشوند. همچنین از آنها به عنوان پوشش، پرکننده و جلادهنده نیز استفاده می‌شود. از دیگر کاربردهای آنها می‌توان به استفاده در صنعت اسلحه سازی، تولید پارچه های پیشرفته، صنعت هوافضا و تولید کامپوزیت های پیشرفته، عایق سازی های الکتریکی، سپرهای ضد گلوله، فیلترهای صنعتی، لباس ها و محافظ های ورزشی نیز اشاره کرد. دمای انتقال آرامیدهای تجاری، که بالاتر از دمای تجزیه آنهاست، و همینطور حل پذیری ضعیف آنها در حلال های آلی متداول، باعث شده که کاربرد آنها محدود و فرایند پذیری شان مشکل باشد[61].
2-1- پلی‌آمیدهای آروماتیک تجاری
پلی‌آمیدهای تمام آروماتیک، پلی‌آمیدهای سنتزی هستند که که حداقل 85% گروه های آمید در آنها مستقیم به دو حلقه آروماتیک متصل هستند.[70] نایلون 6،6 از جمله پلیمرهای مهندسی میباشد که دارای استحکام کششی و قابلیت مفتول­شدن بالا، مقاومت شیمیایی خوب، ضریب اصطحکاک کم، عایق الکتریکی خوب و فراورش آسان می­باشد. البته، این پلیمرها معایبی مانند، جذب رطوبت بالا، پایداری ابعادی کم، دمای تجزیه حرارتی کم و به خصوص آتش­گیری آسان را دارند. دماهای گداز بسیار بالا در آرامیدهای تجاری که بالای دمای تجزیه­شان واقع می­ شود و حلالیت پایین­ آنها در محلول­های آلی معمول، باعث سخت شدن فرایند پذیری آنها شده و کاربردشان را محدود می­ کند. در نتیجه، پژوهش های پایه­ای و کاربردی اخیر بر روی بهبود فرایندپذیری و حلالیت آن­ها تمرکز دارد به این منظور که حوزه­ کاربردهای تکنولوژیکی این مواد را گسترش دهند. شکل 1-1 ساختمان پلی پارا فنیلن ترفتالامید و پلی متا فنیلن ایزوفتالامید را نشان می‌دهد که آرامیدهای تجاری هستند.
 
 اولین آرامید با جهت گیری تمام پارا، پلی پارا بنزآمید (PPBA) (Fiber B®) بود.  PPBA در سال 1970 بوسیله PPPT با نام تجاری کولار جایگزین شد. بسپارش تراکمی آنها در دماهای پایین و در محلول ترفتالویین دی کلرید و پارافنیلن دی آمین در هگزا متیل فسفرآمید انجام گرفت. بعدها از N-متیل 2 پیرولیدون و  برای انجام واکنش استفاده شد.
کارایی بالای کولار ناشی از ساختمان شیمیایی آن می‌باشد. ساختارهای تمام آروماتیک با استخلاف های تمام پارا، ماکرومولکولهای میله مانند را ایجاد می‌کنند که انرژی همدوسی بالایی دارند و به علت پیوندهای هیدروژنی درون مولکولی تمایل زیادی به متبلور شدن دارند. فیبرهای کولار می‌توانند به کامپوزیت ها و موادی با مقاومت مکانیکی و گرمایی عالی  تبدیل شوند.
پلی‌آمیدهای تمام آروماتیک با جهت گیری متا  درحلقه فنیلین مثل PMPI  ساختارهای کمتر خطی دارند  و یک کاهش پیوسته در انرژی چسبندگی و تمایل‌شان به بلورینگی دیده می‌شود. این پلی‌آمید یک پلیمر با عملکرد بالا با مقاومت مکانیکی و گرمایی بالا می‌باشد که در سال 1967 تحت نام تجاری نومکس معرفی شد.
 علاوه بر این هم بسپارش TCP با PPD و 3،4-دی آمینو دی فنیل اتر (ODA) منجر به ایجاد یک پلیمر نسبتا انحلال پذیر ODA/PPPT با نام تجاری تکنورا technora می‌شود(شکل1-1). عدم تقارن مونومر ODA و هم بسپارش، منجر به تولید پلیمری با نظم ساختاری و انرژِی همدوسی کمتر می‌شود.
در جدول 1-1 خلاصه ای از ویژگی­های فیزیکی الیاف­های آرامیدی تجاری (­پارامترهای شبکه بلوری، چگالی، درصد رطوبت متعادل، ویژگی­های کششی در دماهای اتاق و بالا، ویژگی­های حرارتی و مقاومت شیمیایی­) و ویژگی­های فیلم­های آرامیدی تجاری نمایش داده شده است. همگی این پلیمرها دارای مقاومت حرارتی بالایی می‌باشند، و این امر نشان می‌دهد که  حضوریک پلیمر در صنعت نیازمند مقاومت حرارتی بالای آن پلیمر است. پایداری حرارتی، یکی از زمینه‎های نوین در علوم پلیمری می‎باشد [69] . خواص حرارتی در پلیمرها به قدری حائز اهمیت میباشد که هم اکنون دستگاه ها و روش های جدیدی جهت اندازه گیری این خواص در آزمایشگاه ها وپژوهشگاه های پلیمر بکار گرفته شده و هر روزدرحال پیشرفت می‌باشند.
عوامل موثر در بهبود فرایندپذیری پلی‌آمیدها:
امروزه پژوهش های عملی و بنیادی روی افزایش فرایندپذیری و حل پذیری پلی‌آمیدهای آروماتیک متمرکز شده است تا کاربرد حرفه ای و صنعتی این پلیمرها افزایش یابد. کاهش برهمکنش های بین زنجیری پلیمر و انرژی چرخشی آنها از عوامل موثر در کاهش دمای شیشه ای شدن و حل پذیری پلیمرها می‌باشد که این امر در نتیجه حضور گروه های انعطاف پذیر از قبیل آریل اترها، گروه های کتونی و استری، سولفون ها واتصالات سولفوری، که به عنوان گروه های پل ساز قطبی و غیر قطبی مطرح می‌باشند، ممکن می‌شود که به تعدادی از این گروه ها در جدول 1-2 اشاره شده است. همچنین حضور حلقه های آروماتیک و افزایش تقارن و صلب بودن زنجیره های پلیمری دمای تبدیل شیشه ای را افزایش می‌دهند. میزان بلورینگی از دیگر پارامترهای مهم در خواص پلیمرها می‌باشد که در این مورد نیز وجود گروه های حجیم در ساختار پلیمرها وتعبیه بخشهای نامتقارن و پیچ خورده و عدم وجود گروه های ایجاد کننده پیوندهای هیدروژنی منجر به کاهش آن می‌شوند. به طور کلی عواملی که از نزدیک شدن زنجیره های پلیمری به یکدیگر جلوگیری می‌کنند و همینطو عواملی که باعث افزایش حل پذیری پلیمر های می‌شوند، تاثیر بسزایی در کاهش بلورینگی پلیمرها دارند. چنین به نظر میرسد که گروه های دارای استخلاف پارا، بلورینگی را افزایش میدهند و با جایگزینی اتصالهای متا به جای پارا توانایی بلورینگی پلیمرها کاهش مییابد. اغلب افزایش انعطاف پذیری توسط استخلاف ارتو از بلورینگی بالا جلوگیری میکند. این بدان علت است که معمولا استخلاف ارتو، تقارن زنجیر را کاهش داده و چیدمان زنجیرهای پلیمری را در شبکه بلوری مشکل میسازد. [41]
حضور حلقه‌های هتروسیکل نیز در زنجیره اصلی پلیمرها و در ساختمان گروه های جانبی، باعث افزایش مقاومت گرمایی ومکانیکی و حل پذیری آنها می‌شوند. بنابراین بسیاری از پلیمرهای مقاوم گرمایی، حاوی حلقه های هتروسیکل در زنجیره های خود می‌باشند. [54-8-16] همچنین وجود حلقه های آویزان هتروآروماتیک در پلی‌آمیدها باعث ایجاد آرامیدهای آمورف و حل پذیر با مقاومت گرمایی بالا می‌شوند .[12]وجود گروه های كاردو یا كربنهای  در زنجیره اصلی به عنوان یک بخش تشكیل دهنده حلقه های جانبی، منجر به ایجاد پلیمرهایی با مقاومت گرمایی و شیمیایی عالی، خواص دی الكتریک و مكانیكی خوب و فرایندپذیری آسان و حل پذیری بالا می‌شود[23]. در جدول 1-3 به طور خلاصه به این گروه ها اشاره شده است.
[1] – Dupont
[2] – Nylon

پایان نامه ارشد: تاثیر عصاره گیاه موسیر بر برخی فاکتورهای بیوشیمیایی و بافت پانکراس و کبد و کلیه رت های صحرایی نر دیابتیک ناشی از تزریق استرپتوزوتوسین


دیابت شیرین نوعی اختلال متابولیک است که بدن در آن توانایی استفاده از قند و چربی را از دست می دهد. این بیماری به علت اختلال در ترشح انسولین و یا مقاومت به انسولین به وجود می آید و در هر دو حالت موجب افزایش گلوکز خون(هیپرگلایسمی) و دفع گلوکز در ادرار(گلیکوزوری) می شود. دیابت از زمان های خیلی پیش شناخته شده است. این بیماری با علائم مشخصی مانند پلی اوری(افزایش میزان ادرار)، پلی دیپسی[1] (تشنگی زیاد)، پلی فاژی[2] (اشتهای زیاد) و کاهش وزن همراه است(2).
دیابت یکی از مشکلات جدی دنیای امروزاست. براساس گزارش فدراسیون بین المللی دیابت ، 246 میلیون بیمار مبتلا به دیابت در سراسر دنیا وجود دارد. شیوع بیماری دیابت به سرعت درحال پیشرفت می باشد، به طوری که انتظار می رود شمار بیماران در سال 2025 به 380 میلیون نفر افزایش پیدا کند (3).
دیابت با مشکلات کوتاه مدت مانند هیپوگلاسیمی و مشکلات بلند مدت همچون بیماری های قلبی وعروقی، نفروپاتی ، نوروپاتی و رتینوپاتی همراه است (4).
سلول های بتای جزایر لانگرهانس که مسئول ترشح انسولین هستند نسبت به میزان گلوکز موجود در خون حساس هستند و درپاسخ به افزایش یا کاهش می دهند.علاوه بر این سلول های بتای جزایر لانگرهانس ، در پاسخ به تغییرات اسیدهای آمینه اسیدهای چرب خون انسولین ترشح می کنند. ترشح انسولین توسط سیگنال های نورونی خاص ، هورمون ها و عوامل فارماکولوژیک تنظیم و تعدیل می شود. در افراد دیابتی نوع یک انسولین تولید نمی شود و یا مقدار آن به قدری کم است که برای کنترل قند خون کافی نیست(5).
دیابت ملیتوس (شیرین) به دو دسته اصلی دیابت نوع یک و دیابت نوع دو تقسیم می شود(6).
علامت دیابت نوع یک در اغلب موارد خود ایمنی نسبت به سلول های بتا است. دیابت نوع دو علت پیچیده تری دارد و سبب مقاومت بافت های عضلانی و چربی به انسولین ایجاد می شود (7).
درمراحل پایانی دیابت نوع دو، بافعال شدن چندین مرحله از سیکل آپوپتوز(مرگ برنامه ریزی شده) سلول های بتا دچار مرگ سلولی شده

پایان نامه

 ودراثر فقدان انسولین ناشی از آن حالتی بسیار شبیه به دیابت نوع یک ایجاد می گردد بدین ترتیب دربیماران دیابتی سطح گلوکز خون افزایش یافته و از آن جا که سلول های بتای پانکراس قادر به پاسخ گویی به محرک های انسولین ساز نیستند تزریق روزانه انسولین همانند بیمارانی که دارای دیابت نوع یک هستند ضروری است(8).

اختلال دررشد وحساسیت به عفونت های مختلف نیزممکن است باهیپرگلاسیمی مزمن همراه باشد (9).
درحالات بسیارشدید ممکن است کتواسیدوز یا یک حالت هیپراسمولار غیرکتوزی پیشرفت کرده و منجربه بی حسی ، کما ، ودرغیاب یک درمان موثر، مرگ شود.این علائم اغلب شدید نبوده یا ممکن است حضورنداشته باشند، درنتیجه هیپرگلاسیمی لازم برای ایجاد تغییرات پاتولوژیکی و عملکردی ممکن است مدت ها پبش از تشخیص دیابت حضورداشته باشد (10).
[1] Polydipsy
[2] Polyphagy
[1]-Areteas
[2]-Thomas Willis
[3]-Mattew Dobhen
[4]-John Rolleh
[5]-Mellitus
[6]-Diabetes Mellitus
[7]-Claude Bernard
[8]-Oskar Minkowski
[9]-Josef Von Mering
[10] -Paul Langrhans
[11]-Insulin

پایان نامه ارشد: تهیه الکترودهای کربن سرامیکی و کربن شیشه ای اصلاح­ شده با نانولوله کربن و مولکول های کروسین


الکتروشیمی شاخه‌ای از شیمی است که به بررسی واکنش­های شیمیایی می­‌پردازد که در اثر عبور جریان الکتریکی انجام می­شوند و یا انجام یافتن آن­ها سبب ایجاد جریان الکتریکی می­ شود. فنون الکتروشیمیایی تجزیه، تاثیر متقابل شیمی و الکتریسیته، یعنی اندازه ­گیری کمیت­های الکتریکی، مانند جریان، پتانسیل و بار و ارتباط آن­ها با پارامترهای شیمیایی را شامل می­شوند. چنین استفاده­ای از اندازه ­گیری­های الکتریکی برای اهداف تجزیه­ای، گستره­ی وسیعی از کاربردها را به وجود می­آورد که بررسی­های زیست محیطی، کنترل کیفیت صنعتی، یا تجزیه­های زیست پزشکی را در بر می­گیرد. فرایندهای الکتروشیمیایی بر خلاف بسیاری از اندازه ­گیری­های شیمیایی که در درون محلول­های همگن انجام می­گیرند، در حد فاصل الکترود- محلول قرار دارند [1].
الکتروشیمی تجزیه­ای در سال­های اخیر، به عنوان شاخه­ای با دو ویژگی بنیادی و کاربردی از شیمی رشد سریع و چشم­گیری داشته است، این امر از یک سو به ماهیت تلفیق پذیری الکتروشیمی با دیگر علوم و فناوری مانند زیست شناسی، پزشکی و الکترونیک مربوط است و از سوی دیگر ویژگی­های خاص الکتروشیمی در مقایسه با برخی روش­های تجزیه­ای بر کاربرد آن­ها ‌می­افزاید. روش­های الکتروشیمیایی کاربرد زیادی در بررسی فرایندهای انتقال الکترونی بسیاری از مولکول­ها و زیست مولکول­ها و مکانیسم واکنش­های احیا در زمینه ­های مختلف دارند. این روش­ها دارای مزایای زیادی از قبیل حساسیت زیاد، حد تشخیص کم، محدوده خطی وسیع، تشخیص سریع، سادگی روش­ها و دستگاه­های مورد نیاز و کم­هزینه بودن آنالیزها هستند [2].
حسگرها و زیست­حسگرهای الکتروشیمیایی به دلیل حساسیت زیاد، انتخاب­گری بالا، زمان پاسخ­دهی سریع، قیمت مناسب و قابل حمل بودن بسیار مورد توجه قرار دارند. از طرف دیگر حسگرهای الکتروشیمیایی دارای محدودیت­هایی نیز هستند، که از جمله آن­ها می توان به پایداری کم در مدت زمان­های طولانی، تداخلات با سایر گونه­ ها در نمونه­های حقیقی و همچنین به مشکلات انتقال بار در سطح الکترود در برخی موارد اشاره کرد. اخیرا به کارگیری نانوساختارها تاثیر قابل توجهی در توسعه حسگرهای شیمیایی و زیست­حسگرها و افزایش کاربردهای محیط زیستی، کلینیکی و صنعتی داشته است.
نانومواد با توجه به خواص منحصر به فرد خود دارای طیف گسترده­ای از کاربردها در زمینه انرژی، محیط زیست و فن­آوری­های پزشکی

پایان نامه

 هستند که این خواص را در درجه اول اندازه آن، سپس ترکیب و ساختار تعیین می­ کند که به علت این خواص شگفت­انگیز مورد علاقه بسیاری از دانشمندان قرار گرفته­اند [6-3]. از میان انواع نانوساختارها، اکسیدهای فلزی و نانولوله­های کربنی کاربردهای ویژه ای در الکتروشیمی و الکتروآنالیز گونه­ ها دارند. از طرف دیگر روش ساخت نانوذرات فلزات و اکسیدهای فلزی تاثیر قابل توجهی بر خواص فیزیکی، شیمیایی و الکتروشیمیایی آن­ها دارند. از میان روش­های متنوع ساخت نانوذرات اکسیدهای فلزی، انباشت الکتروشیمیایی به دلیل سادگی روش، سازگار بودن با محیط و انجام­پذیری در دمای پایین، بسیار مورد توجه بوده است. انباشت الکتروشیمیایی به فرایندی گفته می­ شود که با اعمال پتانسیل مناسب و کنترل سایر عوامل لایه­ای از فلز در سطح الکترود رسوب کرده و منجر به به بهبود خواص آن می­ شود. با اعمال شرایط مناسب، با بهره گرفتن از این روش می­توان نانوساختارهای فلزی را در سطح الکترود سنتز نموده و الکترود را اصلاح کرد [7].

2-1- انواع الكترودهای مورد استفاده در شیمی تجزیه
انواع مختلفی از الكترودها با ساختارهای متفاوت در شیمی  تجزیه كاربرد  دارند كه  می توان آن­ها را از دیدگاه ­های مختلفی مورد بحث و بررسی قرار داد. برای یک الكترود دارا بودن هدایت الكتریكی در یک محدوده پتانسیل  شیمیایی حلال مورد  استفاده و پایداری  فیزیكی و شیمیایی مناسب ازاهمیت خاصی برخوردار است. الكترودها بر اساس حالت فیزیكی به دو دسته تقسیم می شوند:
1-2-1- الکترودهای جامد: که شامل الكترودهای فلزی، الكترودهای نیمه هادی، پلیمرهای هادی و  الكترودهای كربنی است
2-2-1- الکترودهای مایع(Hg ): که شامل الکترود قطره جیوه چکنده و الکترود قطره جیوه آویزان است.
1-1-2-1- الکترودهای فلزی:
در حالی که انتخای گسترده­ای از فلزات نجیب امکان پذیر است اما از مهم­ترین این الکترودها می­توان به طلا، پلاتین، نقره، ایریدیم، تنگستن و آلومینیوم اشاره کرد. این الکترودها عمدتا از یک فلز بی­اثر (نسبت به حلال مورد استفاده) تشکیل شده ­اند، امکان استفاده از این الکترودها شدیدا تابع حلال مورد استفاده و محدوده پتانسیل شیمیایی است. این الکترودها معمولا دارای پتانسیل مازاد کمتری بوده و اکسیداسیون و احیای این ترکیبات الکتروفعال در سطح آن­ها به­راحتی انجام می­گیرد و در پیل­های الکتروشیمیایی معمولا به­عنوان الکترود مخالف به­کار می­روند و استفاده از آن­ها به­عنوان الکترود کار بعد از اصلاح سطح آن­ها امکان پذیر است. اصول حاکم بر رفتار این الکترودها از توزیع انرژی فرمی دیراک و تئوری نوار تعیین می­ شود [3-1].
2-1-2-1- الکترودهای نیمه هادی:
قسمت اصلی این الکترودها یک نیمه هادی می باشد که از تک کریستال آن در مطالعات اسپکتروشیمیایی و از آرایه­های آن­ها در شناسایی همزمان چندین آنالیت استفاده می­ شود. از مهم­ترین نیمه­هادی­ها می­توان به گرافیت، سیلیسیم، ژرمانیم، اکسید قلع و اکسید ایندیم اشاره کرد که معمولا لایه­ی نازکی از آن بر روی یک بستر فلزی نشانده می­ شود [4].
3-1-2-1- پلیمرهای هادی:
این پلیمرها به دو دسته تقسیم می شوند:
الف) پلیمرهای ذاتا هادی که به­واسطه داشتن الکترون مازاد و یا کمبود الکترون ذاتا دارای هدایت الکتریکی هستند مانند پلی آنیلین یا پلی پیرول.
ب) پلیمرهای هادی عارضی که با افزودن مواد با هدایت الکتریکی بالا مثل پودر نیکل، نقره، مس و یا گرافیت به پلیمرهای دارای هدایت الکتریکی پایین مثل پلی وینیل کربن یا پلی اتیلن تهیه می­شوند. میزان مقاومت این پلیمرها در حدود 108 اهم بر سانتی­متر است که با افزودن این ترکیبات مقاومت آن­ها تا 1-10 –106 اهم بر سانتی­متر پایین می آید. دوده کربن از شایع­ترین پرکننده­هاست که با افزودن آن به این پلیمرها (حداکثر تا میزان 25% وزن پلیمر) هدایت افزایش می­یابد.                                                                                   
در بعضی  از پلیمرهای  آب­کاری شده نیز  به­عنوان الکترود استفاده شده است که در  آن­ها  یک  فلز  نجیب  همانند  طلا یا  پلاتین به­ طریق  شیمیایی  بر روی بستر پلیمری رسوب داده می­ شود.
Electroless plating1

پایان نامه ارشد: تهیه و بررسی فعالیت کاتالیزگری نانوکامپوزیت­ های تیتانیوم دی اکسید دوپه شده با تعدادی از عناصر لانتانیدی


بخش بزرگی از تركیبات آلی كه باعث ایجاد آلودگی در آب­های طبیعی می­گردند، مواد رنگزای شیمیایی هستند كه به صورت صنعتی و خانگی مورد استفاده قرار می­گیرند. از بین همه مواد رنگی، رنگ­های آزو  وسیع­ترین کاربرد را به­­دلیل تنوع در ساختمان شیمیایی و تولید آسان دارا هستند. رنگ­های آزو برای رنگی نمودن پلی­ آمید­ها، پلی­استر­ها، آکریلیک­ها، پلی­اولفین­ها و الیاف سلولز و نیز برای رنگی نمودن روغن جلا، پلاستیک­ها، جوهر چاپگر، لاستیک و لوازم آرایشی کاربرد دارند. بنابراین به­ دلیل تنوع کاربرد این رنگ­ها، وجود این ترکیبات در آلودگی پساب­های صنایع و محیط قابل انتظار است[6-1].
آزاد شدن این مواد در طبیعت، بزرگ­ترین منبع آلودگی برای اکوسیستم‌های طبیعی می ‌باشد. مواد رنگزا در مقابل تخریب زیستی مقاوم بوده و نه تنها رنگ نامطلوبی به آب می­دهند، بلكه در بعضی موارد خود تركیبات مضری بوده و ممکن است طی فرایند‌های مختلف از قبیل هیدرولیز، اكسایش، یا واكنش­های شیمیایی دیگر كه در آب اتفاق می­افتد، به آمین‌های آروماتیک تبدیل می ‌شوند که یکی از عوامل سرطان‌زا می‌­باشند. حضور مواد رنگزای شیمیایی علاوه بر آنكه بر روی آلودگی منابع آبی تأثیر مـی­گذارند، با مـتوقف كردن تولیـد اكسیژن و جـلوگیری از نفوذ خورشـید موجـب مـرگ مـوجودات زنـده و وارد آوردن صدمـات جـدی به محیـط زیسـت می­گردند[9-7]. ترکیبات آلی که سبب بروز رنگ حقیقی می­شوند ممکن است موجب افزایش نیاز کلر آب شده و درنهایت موجب کاهش اثر گذاری کلر بر آب به عنوان یک ماده گندزدا شود، شاید مهم­تر از این محصولاتی باشد که در اثر ترکیب این مواد با کلر به وجود می­آیند.  كاربرد مواد رنگزا به علت توسعه صنعتی و تقاضای روزافزون، افزایش می­یابد. امروزه حدود 10 هزار مادة رنگزا و رنگدانه در صنایع مختلف استفاده می­گردد كه تولید سالانه آن­ها بالغ بر700 هزار تن بوده و حدود  50 درصد از آن­ها رنگ­های آزو می­ باشند. حدود 20 درصد رنگ­های تولید شده در جهان در طی فرایند­های رنگرزی و پرداخت، هدر می­روند و به صورت پساب وارد محیط زیست می­شوند[12-10]. بنابراین لزوم حذف این آلاینده­ها ضروری به نظرمی­­رسد.
2-1- رنگ های آزو
این گروه از رنگ­ها شامل بزرگ­ترین و مهم­ترین دسته رنگ­ها بوده، به­ طور وسیعی مورد استفاده قرار می‌گیرند. مشخص‌ترین ویژگی این رنگ­­ها داشتن یک یا چند گروه آزو است که بین دو قسمت آلی رنگ به عنوان پل عمل می‌کنند و حداقل یکی از این گروه‌ها آروماتیک هستند. با گروه رنگزای آزو، می‌توان طیف وسیعی از رنگ­ها مثل زرد، قرمز، نارنجی، آبی، سبز، بنفش و سیاه را تهیه کرد. این رنگ­ها را برحسب تعداد گروه‌های آزو به­صورت رنگ­ های مونو آزو ، دی آزو و پلی‌آزو طبقه‌بندی می‌کنند.
رنگ­های منو آزو دارای یک گروه آزو بوده و از پر استفاده‌ترین گروه‌های آزو هستند. این رنگ­ها شامل رنگ­های حلال  مانند زرد آنیلین یا نارنجی سودان G که به عنوان حلال سایر رنگ­ها بکار می‌روند، رنگ­های بازی یا کاتیونی، رنگ­های دندانه‌ای و رنگ­های دارای گروه اسیدی مانند رنگ معروف متیل اورانژ می­باشند. در شکل 1-1 ساختار رنگ زرد آنیلین و متیل اورانژ نشان داده شده است.

پایان نامه

 

تعداد رنگ­های دی‌آزو محدود و اغلب غیر قابل حل در آب می­باشند و از لحاظ کاربردی جز رنگ­های اسیدی دندانه‌ای و مستقیم محسوب می‌شوند. یکی از مهم‌ترین این رنگ­ها، اسید سیاه است.    از  مهمترین رنگ­های تترا آزونیوم قرمز کنگو می­باشد. این رنگ­ها از فراوان‌ترین رنگ­های سیس آزو هستند و در بر گیرنده پیگمان­ها ، رنگ­های مستقیم و همچنین تعدادی از رنگ­های اسیدی و دندانه‌ای هستند.
3-1- روش های حذف رنگ
در بعضی از کشورها، محدودیت­های بسیار شدیدی برای تخلیه پساب­ها وجود دارد که صنعت نساجی را به استفاده دوباره از آب تصفیه شده و توسعه دادن جانشین­هایی برای مواد شیمیایی سمی، متعهد كرده است. مطالعات وسیعی برای حذف آلودگی فاضلاب­های تولید شده توسط صنعت نساجی از طریق فرایندهای شیمیایی، بیولوژیكی و بیوشیمیایی انجام شده است. فرایندهای دیگری كه برای حذف فلزات سنگین و رنگ از پساب های آلوده به مواد رنگزا استفاده شده است شامل انعقاد ولخته­سازی شیمیایی، جذب سطحی روی كربن فعال، ازن زنی، غشاهای اكسیداسیون كاتالیزی، فرایندهای الكتروشیمیایی، تصفیه اكسیداسیونی شامل پراكسید هیدروژن، و… می­باشد. روش­های بیولوژیکی رایج تخریب و رنگ­زدایی به دلیل وجود گروه­های آروماتیک در رنگ­های آزو ناکارآمد می­باشند وتخریب به کندی صورت می­گیرد. روش­های فیزیکی مانند استفاده از کربن فعال[1]، فیلتر­کردن[2] و اسمز­معکوس[3] و لخته­سازی[4] پر هزینه­اند به­علاوه این روش­ها رنگ­ها را تخریب نمی­ کنند و تنها آن­ها را از فازی به فاز دیگر انتقال می­دهند. با این­­حال تولید لجن مهم­ترین محدودیت این روش­­ها است[16-13].
یكی از مهم­ترین این روش­ها، فرایند های اكسیداسیون پیشرفته[5] می­باشند، که شامل فرایندهای شیمیایی، فتوشیمیایی و فوتوکاتالیزگری برای تولید رادیکال هیدروکسیل (OH.) است. رادیکال هیدروکسیل یک اکسنده بسیار قوی و غیر گزینش­پذیر است که بسیاری از ترکیبات آلی به خصوص ترکیبات آلی غیر اشباع را می ­تواند اکسید کند. فرایند تخریب فوتوکاتالیزگری رنگ­های آزو در حضور تابش فرابنفش و یا نور مرئی، هوازی می­گردد. مزیت دیگر این روش، اکسایش کامل ترکیب آلی مورد نظر به آب، کربن دی­اکسید، و یا اسیدهای معدنی و عدم نیاز به فشار و دماهای بالا می­باشد [19-17].
استفاده از نیمه­رساناهایی مانند TiO2،ZnO ، CdS،Fe2O3  به عنوان فوتوکاتالیزگر برای تجزیه آلودگی­های آلی مورد توجه قرار گرفته­اند. به دلیل خواص نوری و الکتریکی، غیرسمی بودن، فعالیت کاتالیزگری بالا و پایداری شیمیایی نانوذرات تیتانیوم دی ­اکسید به عنوان یک فوتوکاتالیزگر رایج مورد استفاده قرار گرفته است[20].
4-1- معرفی فوتوکاتالیزگر
فوتوکاتالیزگر‌ها به منظور حذف آلاینده‌هایی که به وسیله­ فرایند‌های زیستی حذف نمی‌شوند، سال‌هاست که در کشورهای صنعتی به کار می‌روند.  فوتوکاتالیزگر‌ها به طور عمده اکسید‌های جامد نیمه رسانا هستند که تحت تابش نور، با انرژی کافی فعال می‌شوند[23]. هزینه­ کمتر، واکنش‌های سریع­تر و شرایط واکنش ملایم­تر از جمله مهم­ترین مزایای استفاده از فوتوکاتالیزگر­ها­ نسبت به سایر کاتالیزگرهاست. از جمله مزایای مهم دیگر این کاتالیزگرها می­توان به این ویژگی اشاره کرد که با بهره گرفتن از این کاتالیزگرها طیف وسیعی از آلودگی‌های محیط زیستی آلی به دی اکسیدکربن و آب تبدیل می شود[30].
1-4-1- تاریخچه
    اولین فوتوکاتالیزگر معرفی شده، تیتانیوم دی اکسید است. تاکنون به طور دقیق مشخص نشده که اولین بار در چه زمانی و توسط چه کسی از تیتانیوم دی اکسید برای القای واکنش‌های شیمیایی استفاده شده است. در سال 1938 از تیتانیوم دی اکسید به عنوان کاتالیزگری که در حضور نور فعال می‌شد، در صنعت رنگ­سازی استفاده شد؛ اما در گزارش‌های ارائه شده واژه‌ی فوتوکاتالیزگر­ به کار نرفت و تیتانیوم دی اکسید به عنوان حساس کننده­ نوری[1]معرفی شد. در سال 1956 ماشیو[2] در گزارشی در مورد خود اکسایش انجام شده توسط تیتانیوم دی اکسید، از آن به عنوان فوتوکاتالیزگر یاد کرد[21]. فوجی شیما و هوندا[3] در سال 1972 به کمک آند تیتانیوم دی اکسید و تحت تأثیر نور فرابنفش، فرایند آب کافت (تجزیه آب به اکسیژن و هیدروژن) را انجام دادند[22]. به این ترتیب کاربرد گسترده­ی فوتوکاتالیزگر­­ها در واکنش‌های اکسایش و کاهش آغاز شد.
1- Photosensitizer
2- Mashio
3- Fujishima and Hond  
4- Valence Band
1- Active Carbon
2- Filtration
3- Reverse Osmosis
4- Coagulation
5- AOPs

پایان نامه ارشد: تولید بیوپلیمر پلی هیدروکسی آلکانوآت ها و بررسی امکان استفاده آنها در نانوکامپوزیت های پلیمری

:
 استفاده از پلیمرها و پلاستیک ها در اغلب وسایل انسان از ریزترین آنها گرفته تا بزرگترین آنها انكار ناپذیر است. دلیل این استفاده وافر پلیمرها و پلاستیک ها در زندگی  انسان خواص بسیار زیاد آنها می باشد. مصرف سرانه پلاستیک در اروپا 60 كیلوگرم و در آمریكا 80 كیلوگرم در سال است [1]. علیرغم فواید فراوان پلیمرها و پلاستیک ها، استفاده از آنها باعث معضلات زیست محیطی فراوان شده است و همین امر باعث شده است كه بشر به فكر تولید پلیمرهای زیست تخریب پذیر و تخریب زیستی پلیمرها و پلاستیک ها بیافتد.
مکانیسمهای درونی و توانایی خود تنظیمی طبیعت نمی توانند این آلاینده ها را تجزیه کنند چون با این مواد نا آشنا هستند. این امر موجب شده است بسیاری از کشورها شروع به توسعه پلاستیک های قابل تجزیه زیستی کنند. بر اساس یک تخمین، بیش از 100 میلیون تن پلاستیک هر ساله تولید می شوند. 40% از این مقدار به محل های دفن زباله منتقل می شود و چند صد هزار تن هر ساله به محیط های دریایی ریخته می شوند و در مناطق اقیانوسی تجمع می یابند. سوزاندن پلاستیک ها  یکی از گزینه ها در دفع پلاستیک ها می باشد؛ اما علاوه بر پرهزینه بودن خطرناک نیز می باشد[1-2].
پلاستیک هایی که کاملا تجزیه پذیرند، نسبتاٌ جدید و نوید دهنده اند که به خاطر بهره گیری از باکتریها برای تشکیل بیوپلیمر می باشد که عمدتاٌ شامل پلی هیدروکسی آلکانویت ها[1]، پلی لاکتیک اسیدها[2]، پلی استرهای آلیفاتیک[3]، پلی ساکاریدها[4]،  و یا ترکیبی از این مواد می باشند[1].
1- انواع پلیمرهای زیست تخریب پذیر
پلیمرهای زیست تخریب پذیر زیادی شناسایی شده اند و یكی از مهمترین آنها پلی هیدروكسی آلكانوات ها می باشد. استفاده از این گروه پلیمرهای زیست تخریب پذیر در كشاورزی و صنایع دارویی و غیره بسیار مورد توجه قرار گرفته است كه دلیل آن سازگاری با محیط زیست و سامانه های حیاتی می باشد[2].
پلی هیدروكسی آلكانوات ها ،پلیمرهای زیست تخریب پذیر هستند و به صورت ذرات درون سلولی در میکروارگانیسم های مختلف تشکیل می شوند[3]. وزن مولکولی این پلیمرها در محدوده 105*2 تا  106*3 دالتون می باشد. وزن مولکولی بر حسب نوع میکروارگانیسم و شرایط رشد تغییر می کند[3].
یکی ازمهمترین پلی هیدروکسی آلکانوات ها، پلی هیدروكسی بوتیرات است. پلی هیدروكسی بوتیرات یک پلیمر خطی از 3-هیدروكسی بوتیرات است و در اندازه های مختلفی از ذرات در داخل سلول موجود است. پلی هیدروكسی بوتیرات به عنوان یک منبع ذخیره انرژی و كربن برای میكروارگانیزم می باشد و تحت شرایطی مثل محدودیت نیتروژن، فسفر، اكسیژن، یون ها و غیره در داخل سلول تجمع می یابد و با رفع این محدودیت ها پلی هیدروكسی بوتیرات تجزیه می شود. پلی هیدروكسی بوتیرات جامد به عنوان یک پلی استر ترموپلاستیک زیست تخریب پذیر مورد توجه قرار گرفته است زیرا خواص شبیه به خواص تعداد زیادی از پلاستیک های سنتزی معمولی دارد[4-6].

پایان نامه

 

2- ویژگیهای پلی هیدروکسی آلکانوآتها
پلی هیدروكسی بوتیرات دارای خواص فیزیكی و شیمیایی شبیه به پلی اتیلن و پلی پروپیلن است و مانند پلاستیكهای معمولی در زمینه های متعددی قابل استفاده است. به عنوان مثال می توان آن را قالب ریزی كرد، توسط پركن های غیر آلی تقویت كرد، به صورت رشته هایی به هم تابید یا به شكل ورق درآورد و دارای خواص آب بندی عالی است[7].
طی دو دهه اخیر پلی‌هیدروكسی‌آلكانوات‌ها بطور وسیعی مورد مطالعه قرار گرفته‌اند. آنها قابل تجزیه و سازگار با محیط‌زیست بوده و از منابع تجدید‌پذیر قابل استحصال می‌باشند. این خواص، آنها را بعنوان جایگزینی مناسب برای پلیمرهای مشتق‌شده از مواد نفتی معرفی می‌كند. بسیاری از گونه­ های میکروارگانیسم که جزو اعضای خانواده Halobactericeae می­باشند قادر به تولید پلی­هیدروکسی­آلکانوات­ها می­باشند. تاکنون بیش 300 گونه از این میکروارگانیسم­ها شناسایی گردیده و تعداد آن مرتبا در حال افزایش می­باشد[8]. باکتریها قادر به سنتز طیف وسیعی از ترکیبات پلی­هیدروکسی­آلکانوات هستند و تقریبا 150 ترکیب متفاوت از پلی­هیدروکسی­آلکانوات­ها تاکنون شناسایی شده است. پلی­هیدروکسی­آلکانوات­ها که از سلولهای باکتریها گرفته می­شوند دارای ویژگیهای مشابه با پلاستیکهای متداول نظیر پلی­پروپیلن می­باشند[9].. پلی‌هیدروكسی‌آلكانوات‌ها را برحسب نوع مونومر به دو دسته می‌توان تقسیم نمود. دسته اول پلیمرهایی با زنجیره كوتاه هستند كه دارای 3 تا 5 اتم كربن بوده و ترد و شكننده می‌باشند. دسته دوم، پلیمرهایی با زنجیره متوسط كه دارای 6 تا 14 اتم كربن بوده و دارای خاصیت الاستیكی می‌باشند[10].
پلی­هیدروکسی­آلکانوات­ها در فرایند بیولوژیکی هوازی و در محدوده دمایی C° 60 و رطوبت 55% به کمپوست تبدیل می­گردند. مطالعات نشان داده است که در فرایند دفن بهداشتی، 85 درصد پلی­هیدروکسی­آلکانوات­ها تجزیه می­گردد. پلی­هیدروکسی­آلکانوات­ها از گستره وسیعی از مواد اولیه همچون منابع تجدید پذیر (ساکاروز، نشاسته، سلولز) و منابع فسیلی (متان، نفت خام، لیگنیت)، محصولات فرعی (ملاس، آب پنیر، گلیسرول)، اسیدهای آلی مثل (اسید استیک، اسید پروپیونیک و اسید بوتیریک) و دی اکسید کربن قابل استحصال می­باشند[11-12].
3- بیان مسأله
تنوع گسترده مونومرها در پلی­هیدروکسی­آلکانوات­ها طیف وسیعی از پلیمرها با خواص فیزیکی متفاوت ایجاد کرده است. پلی­هیدروکسی­بوتیرات حالت ترد و شکننده داشته و دارای کاربرد بسیار کمی می­باشد. پلی­هیدروکسی­آلکانوات­هایی که دارای زنجیره متوسط هستند خاصیت الاستیکی داشته و موادی سخت محسوب می­شوند که برای تولید لاستیک بسیار مناسب می­باشند. کوپلیمرهای پلی­هیدروکسی­آلکانوات شامل هیدروکسی­بوتیرات به همراه زنجیره­های بلندتر نظیر هیدروکسی­ والرات، هیدروکسی ­هگزانوات یا هیدروکسی ­اوکتانوات بوده و دارای انعطاف­پذیری بیشتری بوده و دوام بالاتری دارند. این ترکیبات قابلیت مصرف در طیف وسیعی از تولیدات نظیر بطری، خودتراش، پوششهای ضد آب و بسته­بندی مواد غذایی را دارا هستند[13].
در این تحقیق با استفاده  از منابع کربنی مختلف توانایی باکتریهای Cupriavidus necator DSMZ 545، Azotobacterbeijerinckii  DSMZ 1041  و  Azohydromonas lata DSMZ 1123   و درنهایت   Hydrogenophaga pseudoflava DSMZ 1034    در تولید بیوپلیمر هیدروکسی مورد بررسی قرار گرفته است. از جمله سوالاتی که سبب شروع این تحقیق گردید:
1- میزان تولید بیوپلیمر توسط باکتریهای مذکور بر روی منابع ارزان چگونه است؟
2- آیا باکتری های فوق توانایی تولید کوپلیمر را دارا هستند؟
3- تاثیر منابع مختلف کربن بر نوع و میزان پلیمر تولیدی چه میزان است؟
4- تاثیر منابع فسفر و نیتروژن در تولید بیوپلیمر به چه صورت است؟
5- کدام باکتری از میان باکتریهای مورد بررسی شرایط بهتری جهت تولید بیوپلیمر دارد؟
6- مدل سینتیکی رشد وپارامترهای سینتیک رشد چگونه می باشند؟
7- فرایند های مذکور در فرمانتورهای پیوسته و غیر پیوسته به چه صورت قابل اجرا می باشند؟
8- نرخ انتقال اکسیژن در فرایندهای بیولوژیکی مذکور چگونه است؟
9- آیا امکان استفاده از بیوپلیمر تولید شده جهت تولید نانوکامپوزیت  پلیمری وجود دارد؟
تحقیقات موجود نشان می­دهد که استفاده از منابع ساده در تولید پلی­هیدروکسی­آلکانوات­ها سبب تولید تنها یکی از مونومرها شده و پلیمر ترکیبی یا کوپلیمر ایجاد نخواهد کرد، بنابراین ضروری است که منبع کربن بصورت مخلوط و ترکیبی  یا از منابع دارای ترکیبات مختلف استفاده گردد.
4- اهداف تحقیق
تحقیق حاضر در زمینه بررسی امکان تولید مواد سازگار با محیط­زیست جهت کاهش اثرات منفی پلاستیکهای مشتق­شده از نفت خام صورت گرفته است. همچنین در این تحقیق از ضایعات ارزان قیمت جهت تولید بیوپلیمر استفاده شده است که این امر باعث کاهش آلودگی محیط زیست و همچنین کاهش قیمت تمام شده تولید بیوپلیمر می شود .بنابر این تولید  پلیمر های زیست تخریب پذیر می ­تواند راهگشای بسیاری از صنایع کشور، از جمله صنایع پزشکی ،داروسازی و بسته­بندی مواد غذایی باشد. در حال حاضر اینگونه مواد از کشورهای دیگر تهیه می­گردد.
[1] Sanitary landfill
[1]Polyhydroxyalkanoates (PHA)
[2] Acids  Poly Lactide (PLA)
[3] Aliphatic polyesters
[4] polysaccharides

 
مداحی های محرم